Math, asked by spoorthi3717, 3 months ago

find the limit .of this ​

Attachments:

Answers

Answered by mathdude500
4

\rm :\longmapsto\:\displaystyle\lim_{x \to \: 0}\sf  \: \dfrac{1 -  {cos}^{3}x }{sin3x \: sin5x}

 \rm \:  =  \:  \: \sf  \: \dfrac{1 -  {cos}^{3}0 }{sin(3 \times 0) \: sin(5 \times 0)}

 \rm \:  =  \:  \: \sf  \: \dfrac{1 -  1}{0 \times 0}

 \rm \:  =  \:  \: \sf  \: \dfrac{0}{0}  \: which \: is \: meaningless

Thus,

\rm :\longmapsto\:\displaystyle\lim_{x \to \: 0}\sf  \: \dfrac{1 -  {cos}^{3}x }{sin3x \: sin5x}

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf (1 -  {cos}^{3}x) \times \displaystyle\lim_{x \to \: 0}\sf \dfrac{1}{sin3x}  \times \displaystyle\lim_{x \to \: 0}\sf \dfrac{1}{sin5x}

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf (1 -  {cos}^{3}x) \times \displaystyle\lim_{x \to \: 0}\sf \dfrac{3x}{sin3x} \times  \dfrac{1}{3x}   \times \displaystyle\lim_{x \to \: 0}\sf \dfrac{5x}{sin5x} \times  \dfrac{1}{5x}

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf (1 -  {cos}^{3}x) \times \displaystyle\lim_{x \to \: 0}\sf  \dfrac{1}{3x}   \times \displaystyle\lim_{x \to \: 0}\sf   \dfrac{1}{5x}

\red{\bigg \{ \because \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{sinx}{x}   = 1\bigg \}}

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf \dfrac{1 -  {cos}^{3} x}{15 {x}^{2} }

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf \dfrac{(1 -  {cos} x)(1 + cosx +  {cos}^{2}x) }{15 {x}^{2} }

\green{\boxed{ \because \:  \bf \: {x}^{3}- {y}^{3} = (x - y)( {x}^{2} + xy+{y}^{2}}}

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf \dfrac{(1 -  {cos} x)}{15 {x}^{2} } \times \displaystyle\lim_{x \to \: 0}\sf (1 + cosx +  {cos}^{2}x)

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf \dfrac{2 {sin}^{2}\dfrac{x}{2}}{15 {x}^{2} } \times  (1 + cos0 +  {cos}^{2}0)

 \rm \:  =  \:  \: \displaystyle\lim_{x \to \: 0}\sf \dfrac{2 {sin}\dfrac{x}{2} \times sin\dfrac{x}{2} }{15 {x}^{2} } \times  (1 + 1 + 1)

 \rm \:  =  \:  \: \dfrac{2}{5} \displaystyle\lim_{x \to \: 0}\sf \dfrac{ {sin}\dfrac{x}{2} \times sin\dfrac{x}{2} }{{x}^{2} }

 \rm \:  =  \:  \: \dfrac{2}{5} \displaystyle\lim_{x \to \: 0}\sf \dfrac{ {sin}\dfrac{x}{2} \times sin\dfrac{x}{2} }{{x} \times x}

 \rm \:  =  \:  \: \dfrac{2}{5} \displaystyle\lim_{x \to \: 0}\sf \dfrac{sin\dfrac{x}{2} }{\dfrac{x}{2} \times 2} \times \displaystyle\lim_{x \to \: 0}\sf \dfrac{sin\dfrac{x}{2} }{\dfrac{x}{2} \times 2}

\red{\bigg \{ \because \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{sinx}{x}   = 1\bigg \}}

 \rm \:  =  \:  \: \dfrac{2}{5}  \times \dfrac{1}{2}  \times \dfrac{1}{2}

 \rm \:  =  \:  \: \dfrac{1}{10}

Additional Information :-

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{sinx}{x} = 1  }}

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{tanx}{x} = 1  }}

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{ {sin}^{ - 1} x}{x} = 1  }}

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{ {tan}^{ - 1} x}{x} = 1  }}

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{log(1 + x)}{x} = 1  }}

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{ {e}^{x}  - 1}{x} = 1  }}

\green{\boxed{ \bf \:\displaystyle\lim_{x \to \: 0}\sf \dfrac{ {a}^{x}  - 1}{x} =  log(a) }}

Similar questions