Math, asked by spoorthi3717, 7 hours ago

find the limit of this.​

Attachments:

Answers

Answered by kamalakarkondury
0

Answer:

Step-by-step explanation:

Answer:

Step-by-step explanation:

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\displaystyle\lim _{x\to 0}\dfrac{x(1 + acosx) - bsinx}{ {x}^{3} }  = 1

We know,

\rm :\longmapsto\:cosx = 1 - \dfrac{ {x}^{2} }{2!}  + \dfrac{ {x}^{4} }{4!}  - \dfrac{ {x}^{6} }{6!}  -  -  -

\rm :\longmapsto\:acosx = a - \dfrac{ {ax}^{2} }{2!}  + \dfrac{ {ax}^{4} }{4!}  - \dfrac{ {ax}^{6} }{6!}  -  -  -

\rm :\longmapsto\:1 + acosx =1 +  a - \dfrac{ {ax}^{2} }{2!}  + \dfrac{ {ax}^{4} }{4!}  - \dfrac{ {ax}^{6} }{6!}  -  -  -

and

\rm :\longmapsto\:sinx = x - \dfrac{ {x}^{3} }{3!}  + \dfrac{ {x}^{5} }{5!}  - \dfrac{ {x}^{7} }{7!}  -  -  -

\rm :\longmapsto\:bsinx = bx - \dfrac{ {bx}^{3} }{3!}  + \dfrac{ {bx}^{5} }{5!}  - \dfrac{ {bx}^{7} }{7!}  -  -  -

On substituting all these values in given, we get

\rm \:\displaystyle\lim _{x\to 0}\dfrac{x\bigg(1+a -\dfrac{{ax}^{2} }{2!}+\dfrac{{ax}^{4} }{4!} +  -  - \bigg) -\bigg(bx -\dfrac{{bx}^{3}}{3!}+ \dfrac{ {bx}^{5} }{5!} +  -  -  - \bigg) }{ {x}^{3} } = 1

\rm \:\displaystyle\lim _{x\to 0}\dfrac{\bigg(1+a -\dfrac{{ax}^{2} }{2!}+\dfrac{{ax}^{4} }{4!} +  -  - \bigg) -\bigg(b -\dfrac{{bx}^{2}}{3!}+ \dfrac{ {bx}^{4} }{5!} +  -  -  - \bigg) }{ {x}^{2} }  = 1

\: \rm\displaystyle\lim _{x\to 0}\dfrac{(1 + a - b) +  {x}^{2} \bigg(\dfrac{b}{3!}  - \dfrac{a}{2!} \bigg) +  {x}^{4}\bigg(\dfrac{a}{4!}  - \dfrac{b}{5!} \bigg) +  -  -  - }{ {x}^{2} } = 1

For limit to be finite,

\rm :\longmapsto\:1 + a - b = 0

\bf\implies \:b = 1 + a -  -  - (1)

So, given limit reduced to

\: \rm\displaystyle\lim _{x\to 0}\dfrac{{x}^{2} \bigg(\dfrac{b}{3!}  - \dfrac{a}{2!} \bigg) +  {x}^{4}\bigg(\dfrac{a}{4!}  - \dfrac{b}{5!} \bigg) +  -  -  - }{ {x}^{2} } = 1

\: \rm\displaystyle\lim _{x\to 0}\bigg(\dfrac{b}{3!}  - \dfrac{a}{2!} \bigg) + \lim _{x\to 0}{x}^{2}\bigg(\dfrac{a}{4!}  - \dfrac{b}{5!} \bigg) +  -  -  - = 1

\rm :\longmapsto\:\dfrac{b}{3!}  - \dfrac{a}{2!}  = 1

\rm :\longmapsto\:\dfrac{b}{3 \times 2 \times 1}  - \dfrac{a}{2 \times 1}  = 1

\rm :\longmapsto\:\dfrac{b}{6}  - \dfrac{a}{2}  = 1

\rm :\longmapsto\:\dfrac{b - 3a}{6} = 1

\rm :\longmapsto\:b - 3a = 6

\rm :\longmapsto\:1 + a - 3a = 6 \:  \:  \:  \:  \:  \:  \:  \:  \:  \{ \: using \: (1) \:  \}

\rm :\longmapsto\:1 - 2a = 6

\rm :\longmapsto\:- 2a = 6 - 1

\rm :\longmapsto\:- 2a = 5

\bf\implies \: a =  \:  -  \: \dfrac{5}{2}

On substituting the value of a in equation (1) we get

\rm :\longmapsto\:b = 1 -  \dfrac{5}{2}

\rm :\longmapsto\:b =  \dfrac{2 - 5}{2}

\bf\implies \:b \:  =  \:  -  \: \dfrac{3}{2}

Similar questions