Physics, asked by QuantumGlobe2, 5 months ago

find the limit:
plsssssssss☺​

Attachments:

Answers

Answered by Anonymous
19

Question :

Fine the value of limit

\sf\lim_{x\to0}\dfrac{x+\sin3x}{x-\sin2x}

Solution :

We have ,

\rm\lim_{x\to0}\dfrac{x+\sin3x}{x-\sin2x}

Clearly , this limit in the form of 0/0

Then ,apply L'Hospital's Rule

\sf\lim_{x\to0}\:\dfrac{x+\sin3x}{x-\sin2x}=\lim _{x\:\to0}\dfrac{\frac{dx}{dx}+\frac{d(\sin3x)}{dx}}{\frac{dx}{dx}-\frac{d(\sin2x)}{dx}}

\sf=\lim_{x\:\to0}\:\dfrac{1+(\cos3x)\times3}{1-(\cos2x)\times2}

\sf=\lim_{x\:\to0}\dfrac{1+3\cos3x}{1-2\cos2x}

Now put the value of limit, then

\sf=\dfrac{1+3}{1-2}

\sf=\dfrac{4}{-1}

\sf=-4

_____________________

About L'HOSPITAL'S Rule :

If f(a)=g(a)= 0 , then

 \sf \lim _{x \to \: a} \:  \frac{f(x)}{g(x)}  =  \sf \lim _{x \to \: a} \frac{f'(x)}{g'(x)}

Similar questions