Math, asked by kinghacker, 4 days ago

Find the limit.
 \large{lim_{x→5} \: \frac{ {x}^{2} - 5 }{ {x}^{2} + x - 30} }

Answers

Answered by mathdude500
36

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  - 5}{ {x}^{2}  + x - 30}  \\

If we substitute directly x = 5, we get

\rm \:  =  \: \dfrac{ {5}^{2}  - 5}{ {5}^{2}  + 5 - 30}  \\

\rm \:  =  \: \dfrac{ 25  - 5}{ 25 - 25}  \\

\rm \:  =  \: \dfrac{20}{0}  \\

\rm \:  =  \:  \infty  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  - 5}{ {x}^{2}  + x - 30} \:  =  \:  \infty  \: }} \\

\rule{190pt}{2pt}

Additional information :- Let's solve one more problem.

Evaluate :

\rm \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  - 25}{ {x}^{2}  + x - 30}  \\

Solution :-

\rm \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  - 25}{ {x}^{2}  + x - 30}  \\

can be rewritten as

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  -  {5}^{2} }{ {x}^{2}  + 6x - 5x - 30}  \\

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \:  \frac{(x - 5)(x + 5)}{x(x + 6) - 5(x + 6)}  \\

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \:  \frac{(x - 5)(x + 5)}{(x + 6)(x - 5)}  \\

\rm \:  =  \: \displaystyle\lim_{x \to 5}\rm  \:  \frac{x + 5}{x + 6}  \\

\rm \:  =  \: \dfrac{5 +5}{5 + 6}  \\

\rm \:  =  \: \dfrac{10}{11}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\lim_{x \to 5}\rm  \frac{ {x}^{2}  - 25}{ {x}^{2}  + x - 30}   =  \frac{10}{11} \:  \: }} \\

\rule{190pt}{2pt}

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by souhardya51
1

Answer:

The limit is 10/11

Step-by-step explanation:

Hope it helps you

Please mark me as the brainliest and drop some thanks

Similar questions