Math, asked by gracemack009, 5 hours ago

find the linear equation of:
 \frac{3x}{4}  -  \frac{2x + 5}{3} =  \frac{5}{2}

Answers

Answered by Athul4152
4

 \bf\huge\underline{\underline{ Given :- }}

 \large \bf {\frac{3x}{4} - \frac{2x + 5}{3} = \frac{5}{2}} \\

 \bf\huge\underline{\underline{ To \: Find:- }}

• value of x

 \bf\huge\underline{\underline{ Answer :- }}

  •  \red{\implies} \large\sf  \frac{3x}{4}  -  \frac{2x + 5}{3} =  \frac{5}{2}   \\

  • \red{\implies} \large\sf \:  \frac{3x . 3 - (4 .2x + 5.4)}{4.3}  =  \frac{5}{2}  \\

  • \red{\implies} \large\sf \:  \frac{9x - 8x - 20}{12}  =  \frac{5}{2}  \\

  • \red{\implies} \large\sf \frac{x - 20}{12}  =  \frac{5}{2}  \\

  •  \red{\implies} \large\sf \: x - 20 =  \frac{5 \times 12}{2}  \\

  • \red{\implies} \large\sf \: x - 20 = 5 \times 6

  • \red{\implies  \large\sf \: x  - 20 = 30 }

  • \red{\implies \large\sf \: x =30 + 20 }

  • \red{\implies \large\sf \: \underline{x = 50} }

 \rule{10cm}{0.05cm}

 \rule{10cm}{0.05cm}

Answered by MichWorldCutiestGirl
35

❐QuEsTiOn,

find the linear equation of:

\sf \color{red}  \hookrightarrow \: \frac{3x}{4} - \frac{2x + 5}{3} = \frac{5}{2}  \\

❐SoLuTiOn,

\sf \color{blue}  \hookrightarrow \: \frac{3x}{4} - \frac{2x + 5}{3} = \frac{5}{2}  \\

 \sf \color{red}  \hookrightarrow \: \frac{ 3(3x)- 4(2x + 5)}{12} = \frac{5}{2}  \\

\sf \color{blue}  \hookrightarrow \: \frac{9x- 8x  - 20}{12} = \frac{5}{2}  \\

\sf \color{red}  \hookrightarrow \:  \frac{x - 20}{12} = \frac{5}{2}  \\

\sf \color{blue}  \hookrightarrow \: 2(x - 20) = {12(5)}\\

\sf \color{red}  \hookrightarrow \: 2x - 40 = 60\\

\sf \color{blue}  \hookrightarrow \: 2x = 60 + 40 \\

\sf \color{red}  \hookrightarrow \: 2x =100 \\

\sf \color{blue}  \hookrightarrow \: x = \frac{100}{2}  \\

\sf \color{red}  \boxed{ \sf \hookrightarrow \: x = 50}  \\  \\

VeRiFiCaTiOn,

\sf \color{blue}  \hookrightarrow\frac{3x}{4} - \frac{2x + 5}{3} = \frac{5}{2}  \\

\sf \color{red}  \hookrightarrow\frac{3(50)}{4} - \frac{2(50)+ 5}{3} = \frac{5}{2}  \\

\sf \color{blue}  \hookrightarrow\frac{150}{4} - \frac{100+ 5}{3} = \frac{5}{2}  \\

\sf \color{red}  \hookrightarrow\frac{75}{2} - \frac{105}{3} = \frac{5}{2}  \\

\sf \color{blue}  \hookrightarrow\frac{75}{2} - 35 = \frac{5}{2}  \\

\sf \color{red}  \hookrightarrow\frac{75 - 2(35)}{2} = \frac{5}{2}  \\

\sf \color{blue}  \hookrightarrow\frac{75 - 70}{2} = \frac{5}{2}  \\

\sf \color{red}  \hookrightarrow\frac{5}{2} = \frac{5}{2}  \\

 \sf \color{blue}  \boxed{  \sf\hookrightarrow LHS  = RHS} \\

\sf \color{red}\hookrightarrow \: Hence,Proved

❐FiNal AnSwEr,

\sf \color{red}  \boxed{ \sf \hookrightarrow \: x = 50}   \\

❥Hope you get your AnSwEr.

Similar questions