Math, asked by gazmermadan1532, 7 months ago

find the local and global maximum and minimum value of the function f (x)=4x^3-6x^2-9x+1 on the interval [-1,2]​

Answers

Answered by Anonymous
1

Answer:

put x+1=0 or x=-1. f(-1)is the remainder. now, f(-1)=(-1)^3+(-1)^2-3(-1)+2=-1+1+3+2=5therefore 5 is remainder

Answered by talasilavijaya
2

Answer:

The global maximum is 15 and minimum is -9.

And local maxima is 24 and local minima is -24.

and f'' (x)=24 > 0 therefore x=\dfrac{3}{2} is the local minima.

Step-by-step explanation:

Given the equation, f (x)=4x^3-6x^2-9x+1

Differentiating with respect to x,

f' (x)=12x^2-12x-9                      ...(1)

To solve for x, take

12x^2-12x-9=0\implies 4x^2-4x-3=0

\implies 4x^2+2x-6x-3=0

\implies 2x(2x+1)-3(2x+1)=0

\implies (2x-3)(2x+1)=0

Therefore, the values x=-\dfrac{1}{2} ~~or~~\dfrac{3}{2}  are the critical values of the function.

Differentiating equation (1) again with respect to x,

f'' (x)=24x-12                    

Substituting the values of x,

f'' (x)=24\big(-\frac{1}{2} \big)-12=-24

f'' (x)=24\big(\frac{3}{2} \big)-12=24

Therefore, f'' (x)=-24 < 0 therefore x=-\dfrac{1}{2} is the local maxima.

and f'' (x)=24 > 0 therefore x=\dfrac{3}{2} is the local minima.

For global maxima, the interval is given,  [-1, 2]​

Then the required x values are [-1, \frac{3}{2}, 2]

Substituting these values in equation (1),

f' (x)=12(-1)^2-12(-1)-9=12-12-9=-9

f' (x)=12(2)^2-12(2)-9=48-24-9=15

f' (x)=12(\frac{3}{2} )^2-12(\frac{3}{2} )-9=0

Therefore, the global maximum is 15 for x = 2 and global minimum is for x = - 9.

Similar questions