Physics, asked by janwiparwin11101, 2 months ago

find the local maxima and minima for the function y=x³-3x+2​

Answers

Answered by rakeshkrlaeo2572
0

Answer:

Given, Function,y=x3−3x2+6

So for that, we have to find the critical value of y so, differentiate y respect to x

y′=3x2−6x=3x(x−2)=0

So, X is either be 2 or 0. these are the critical values.

Enter a problem...

Calculus Examples

Popular Problems

 

Calculus

 

Find the Local Maxima and Minima y=x^3-3x+2

y=x3−3x+2y=x3-3x+2

Rewrite the equation as a function of xx.

f(x)=x3−3x+2f(x)=x3-3x+2

Find the first derivative of the function.

Tap for more steps...

3x2−33x2-3

Find the second derivative of the function.

Tap for more steps...

f''(x)=6xf′′(x)=6x

To find the local maximum and minimum values of the function, set the derivative equal to 00 and solve.

3x2−3=03x2-3=0

Add 33 to both sides of the equation.

3x2=33x2=3

Divide each term by 33 and simplify.

Tap for more steps...

x2=1x2=1

Take the square root of both sides of the equation to eliminate the exponent on the left side.

x=±√1x=±1

The complete solution is the result of both the positive and negative portions of the solution.

Tap for more steps...

x=1,−1x=1,-1

Evaluate the second derivative at x=1x=1. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.

6(1)6(1)

Multiply 66 by 11.

66

x=1x=1 is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.

x=1x=1 is a local minimum

Find the y-value when x=1x=1.

Tap for more steps...

y=0y=0

Evaluate the second derivative at x=−1x=-1. If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.

6(−1)6(-1)

Multiply 66 by −1-1.

−6-6

x=−1

Similar questions