Math, asked by ankitpandat2913, 9 months ago

find the local maximA or minima of the function: f(x)= sinx + cosx, where 0

Answers

Answered by amitnrw
5

Given : f(x) = Sin(x) + Cos(x)

To find : Local maxima and local minima

Solution:

f(x) = Sin(x) + Cos(x)

f'(x)  = Cos(x)  - Sin(x)

put f'(x) = 0

=>  Cos(x) = Sin(x)

=> Tan (x) = 1

=> x = π/4  , 5π/4

f'(x)  = Cos(x)  - Sin(x)

f''(x) = -Sin(x) - Cos(x)

f''(x) =  - ( Sin(x) + Cos(x) )

x = π/4   =>  f''(x) < 0

Hence local  maxima at  x = π/4

x = 5π/4     f''(x) > 0

Hence local minima at x = 5π/4

f(x) = Sin(x) + Cos(x)

f(π/4) = Sin(π/4) + Cos(π/4)  = 1/√2  + 1/√2  = √2

f(5π/4) = Sin(5π/4) + Cos(5π/4)  = -1/√2  - 1/√2  = -√2

Local maxima = √2

Local Minima = -√2

Learn More:

examine the maxima and minima of the function f(x)=2x³-21x²+36x ...

https://brainly.in/question/1781825

find minimum value of x^2+y^2+z^2,given that xyz=a^3

https://brainly.in/question/1876026

Answered by anjishnuchakra77
1

Step-by-step explanation:

Do fy7tt7tygxxddfbjugdbbvgbgvvkfxbxudhxjcificjcjfufjcjcchxjfifjduficjfitkvmou

Similar questions