Math, asked by shru2515, 4 months ago

find the local maximum and local mimnimun value of f(x)= x ^{2} - 3x^2 - 24x + 5

​Answer:

Step by Step explanation:​

Answers

Answered by amansharma264
24

EXPLANATION.

Local maximum and local minimum of the value.

⇒ f(x) = x³ - 3x² - 24x + 5.

As we know that,

We can find f'(x).

⇒ f'(x) = d(x³ - 3x² - 24x + 5)/dx.

⇒ f'(x) = 3x² - 6x - 24.

⇒ f'(x) = 3(x² - 6x - 8).

⇒ f'(x) = 3(x² - 4x - 2x - 8).

⇒ f'(x) = 3(x(x - 4) - 2 ( x - 4)).

⇒ f'(x) = 3(x - 2)(x - 4).

Put f'(x) = 0, in equation, we get.

⇒ (x - 2)(x - 4) = 0.

⇒ x = 2  and x = 4.

To find f''(x) we get,

⇒ f''(x) = d(x² - 6x - 8)/dx.

⇒ f''(x) = 2x - 6.

Put the value of x in equation f''(x).

Put x = 2 in equation f''(x).

⇒ f''(x) = 2(2) - 6.

⇒ f''(x) = 4 - 6.

⇒ f''(x) = -2.

⇒ f''(x) < 0 at x = 2.

x is point of local maxima.

f(x) is maximum at x = 2.

Put x = 4 in equation f''(x), we get.

⇒ f''(x) = 2(4) - 6.

⇒ f''(x) = 8 - 6.

⇒ f''(x) = 2.

⇒ f''(x) > 0 at x = 4.

x is the point of local minima.

f(x) is minimum at x = 4.

Answered by BrainlyEmpire
925

\large\underline{\red{\sf \orange{\bigstar} Correct\; Question}}

  • find the local maximum and local mimnimun value of f(x)= x ^{2} - 3x^2 - 24x + 5

⠀⠀⠀

\large\underline{\pink{\sf \green{\bigstar} Solution}}⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Local maximum and local minimum of the value.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f(x) = x³ - 3x² - 24x + 5.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\sf{\star\;☯ \;As \;we\; know \;that,}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\red{\sf{\star\;☯ \;We \;can\; find\; f'(x).}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f'(x) = d(x³ - 3x² - 24x + 5)/dx.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f'(x) = 3x² - 6x - 24.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f'(x) = 3(x² - 6x - 8).

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f'(x) = 3(x² - 4x - 2x - 8).

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f'(x) = 3(x(x - 4) - 2 ( x - 4))

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f'(x) = 3(x - 2)(x - 4)

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\blue{\sf{\star\;⚛\; Put \;f'(x) \;=\; 0, \;in \;equation, \;we \;get}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ (x - 2)(x - 4) = 0.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ x = 2  and x = 4.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink{\sf{\star\;⚛ \;To\; find \;f''(x) \;we \;get  ?}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = d(x² - 6x - 8)/dx.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = 2x - 6.{\boxed{\red{\checkmark{}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Put the value of x in equation f''(x).

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\purple{\sf{\star\;☯ \;Put\; x\; =\; 2 \;in \;equation\; f''(x)}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = 2(2) - 6.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = 4 - 6.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = -2.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) < 0 at x = 2.{\boxed{\pink{\checkmark{}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\orange{\sf{\star\;☮ \;x \;is \;point \;of\; local\; maxima.}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\green{\sf{\star\;☮ \;f(x)\; is\; maximum \;at \;x \;=\; 2.}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Put x = 4 in equation f''(x), we get.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = 2(4) - 6.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = 8 - 6.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) = 2.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • ::⇒ f''(x) > 0 at x = 4.{\boxed{\blue{\checkmark{}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large\underline{\red{\sf \purple{\bigstar} }}x is the point of local minima.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

f(x) is minimum at x = 4.{\boxed{\green{\checkmark{}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀


assingh: Perfect!
cvms: ^^!
BrainlyEmpire: thanks :)
umeshjangra10f31: u gave perfect answer. nice
Ganesh094: All Spam thanks Using different accounts.lol ..
umeshjangra10f31: yes
Similar questions