find the local maximum and local mimnimun value of f(x)= x ^{2} - 3x^2 - 24x + 5
Answer:
Step by Step explanation:
Answers
EXPLANATION.
Local maximum and local minimum of the value.
⇒ f(x) = x³ - 3x² - 24x + 5.
As we know that,
We can find f'(x).
⇒ f'(x) = d(x³ - 3x² - 24x + 5)/dx.
⇒ f'(x) = 3x² - 6x - 24.
⇒ f'(x) = 3(x² - 6x - 8).
⇒ f'(x) = 3(x² - 4x - 2x - 8).
⇒ f'(x) = 3(x(x - 4) - 2 ( x - 4)).
⇒ f'(x) = 3(x - 2)(x - 4).
Put f'(x) = 0, in equation, we get.
⇒ (x - 2)(x - 4) = 0.
⇒ x = 2 and x = 4.
To find f''(x) we get,
⇒ f''(x) = d(x² - 6x - 8)/dx.
⇒ f''(x) = 2x - 6.
Put the value of x in equation f''(x).
Put x = 2 in equation f''(x).
⇒ f''(x) = 2(2) - 6.
⇒ f''(x) = 4 - 6.
⇒ f''(x) = -2.
⇒ f''(x) < 0 at x = 2.
x is point of local maxima.
f(x) is maximum at x = 2.
Put x = 4 in equation f''(x), we get.
⇒ f''(x) = 2(4) - 6.
⇒ f''(x) = 8 - 6.
⇒ f''(x) = 2.
⇒ f''(x) > 0 at x = 4.
x is the point of local minima.
f(x) is minimum at x = 4.
- find the local maximum and local mimnimun value of f(x)= x ^{2} - 3x^2 - 24x + 5
⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Local maximum and local minimum of the value.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f(x) = x³ - 3x² - 24x + 5.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f'(x) = d(x³ - 3x² - 24x + 5)/dx.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f'(x) = 3x² - 6x - 24.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f'(x) = 3(x² - 6x - 8).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f'(x) = 3(x² - 4x - 2x - 8).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f'(x) = 3(x(x - 4) - 2 ( x - 4))
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f'(x) = 3(x - 2)(x - 4)
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ (x - 2)(x - 4) = 0.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ x = 2 and x = 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = d(x² - 6x - 8)/dx.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = 2x - 6.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put the value of x in equation f''(x).
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = 2(2) - 6.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = 4 - 6.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = -2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) < 0 at x = 2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Put x = 4 in equation f''(x), we get.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = 2(4) - 6.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = 8 - 6.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) = 2.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
- ::⇒ f''(x) > 0 at x = 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
x is the point of local minima.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
f(x) is minimum at x = 4.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀