Math, asked by ginza, 1 year ago

find the locus if a complex number is z=x+yi satisfying the relation |z+i|=|z+2|

Answers

Answered by rajiv24all
7
Given,
 |z + i|  =  |z + 2|
 |x + iy + i|  =  |x + iy + 2|
 |x + (y + 1)i|  =  |(x + 2) + iy|
 \sqrt{ {x}^{2}  +  {(y + 1)}^{2} }  =  \sqrt{ {(x + 2)}^{2} }  +  {y}^{2}
 {x}^{2}  +  {y }^{2}  + 1 + 2y =  {x}^{2}  + 4 + 4x +  {y}^{2}
1 + 2y = 4 + 4x
4x - 2y + 3 = 0
It is the required equation of locus.

ginza: tysmmmm
rajiv24all: add it as brainliest answer.
Similar questions