find the locus of a point whose sum of square of distances from two fixed points (a,0) and (-a,0) 2c² .
Answers
Answered by
0
Answer:
The equation of required locus is x² + y² = c² - a²
Step-by-step explanation:
Let P (x, y ) be any moving point.
Let A(a,0) and B( -a, 0)
Given :
PA² + PB² = 2c²
(x - a)² + (y - 0)² + (x + a )² +(y - 0)² = 2c²
x² + a² - 2ax + y² + x² + a² + 2ax + y² = 2c²
2x² + 2y² + 2a² - 2c² = 0
x² + y² + (a² - c²) = 0
x² + y² = c² - a²
This is the eqn of required locus.
Similar questions