Math, asked by lalitagupta0965, 8 months ago

Find the locus of the image of the point (2,3) on the line (2x-3y+4) + lambda (x-2y+3). Here lambda is any constant.

Attachments:

Answers

Answered by Rohit18Bhadauria
24

Given:

A point P(2,3)

A line (2x-3y+4)+λ(x-2y+3)=0

To Find:

The locus of the image of the point P(2,3) on the line (2x-3y+4)+λ(x-2y+3)=0

Diagram:

\setlength{\unitlength}{1cm}\thicklines\begin{picture}(30,15)\put(0,0){\line(2,1){5}}\put(0,2.5){\line(2,-1){5}}\thinlines\multiput(0,1.23)(0.4,0){14}{\line(1,0){0.2}}\multiput(2.49,2.95)(0,-0.4){9}{\line(0,-1){0.2}}\put(3.39,2.6){\circle*{0.1}}\put(3.7,2.7){$P(2,3)$}\put(1.48,-0.24){\circle*{0.1}}\put(0.5,-0.7){$R(h,k)$}\put(2.48,1.24){\circle*{0.2}}\put(1.6,1.7){$Q(1,2)$}\put(1.48,-0.24){\line(2,3){2}}\put(6.5,2){$(2x-3y+4=0)$}\put(6.67,0.4){$x-2y+3=0$}\put(6.5,2.1){\vector(-1,0){2}}\put(6.6,0.5){\vector(-1,0){2.1}}\end{picture}

Here, dotted lines and line PQR are some of those lines which passes through point Q.

Solution:

Here, the equation (2x-3y+4)+λ(x-2y+3)=0 represents the equations of all those lines which passes through the intersection of line 2x-3y+4=0 and x-2y+3=0

Let the intersection point of lines 2x-3y+4=0 and x-2y+3=0 be Q

Now, here

\rm{2x-3y+4=0}------(1)

\rm{x-2y+3=0}-------(2)

On multiplying (2) by 2, we get

\rm{2x-4y+6=0}-------(3)

On subtracting (2) from (1), we get

\rm{2x-3y+4-(2x-4y+6)=0}

\rm{2x-3y+4-2x+4y-6=0}

\rm{y-2=0}

\rm{y=2}

On putting y=2 in (1), we get

\rm{2x-3(2)+4=0}

\rm{2x-6+4=0}

\rm{2x-2=0}

\rm{2x=2}

\rm{x=\dfrac{2}{2}}

\rm{x=1}

So, the coordinates of point Q is (1,2)

\rule{190}{1}

Now, let the image of point P be R(h,k)

Since, point R is image of P,

So,by geometry

\longrightarrow\rm{PQ=QR}

Using Distance formula,

\sf{\sqrt{(1-2)^{2}+(2-3)^{2}}=\sqrt{(h-1)^{2}+(k-2)^{2}}}

On squaring both the sides, we get

\rm{(1-2)^{2}+(2-3)^{2}=(h-1)^{2}+(k-2)^{2}}

\sf{(-1)^{2}+(-1)^{2}=h^{2}+(1)^{2}-2h+k^{2}+(2)^{2}-4k}

\rm{1+1=h^{2}+1-2h+k^{2}+4-4k}

\rm{2=h^{2}-2h+k^{2}-4k+5}

\rm{h^{2}-2h+k^{2}-4k+5=2}

\rm{h^{2}+k^{2}-2h-4k+5-2=0}

\rm{h^{2}+k^{2}-2h-4k+3=0}

On substituting (h,k) with (x,y), we get

\longrightarrow\rm\green{x^{2}+y^{2}-2x-4y+3=0}

Hence, the locus of the image of the point P(2,3) on the line (2x-3y+4)+λ(x-2y+3)=0 is x²+y²-2x-4y+3=0.

Answered by Anonymous
3

✍️Given,

(x−2y+3)+λ(2x−3y+4)=0

image of point (2,3)

✍️we have,

x−2y+3=0

2x−3y+4=0

solving the above equations, we get,

x = 1

y = 2

 \sqrt{( {2 - 1)}^{2} +  {(3 - 2)}^{2}  }  =  \sqrt{ {(h - 1)}^{2} +  {(k - 2)}^{2}  }

 \sqrt{2}  =  \sqrt{ {h}^{2} +  {k}^{2}   - 2h - 4k + 1 + 4}

 \sqrt{2}  =  \sqrt{ {h}^{2}  +  {k}^{2} - 2h - 4k + 5 }

 {h}^{2}  +  {k}^{2}  - 2h - 4k + 5 = 2

 {h}^{2}  +  {k}^{2}  - 2h - 4k + 3 = 0

✍️ Therefore, the required locus is +-2x-4y+3=0

Similar questions