Math, asked by Shs07, 7 months ago

Find the locus of z which satisfies the condition |i+z| / |i-z| =1​

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow\dfrac{|i+z|}{|i-z|}=1

Take z=x+iy and,

\longrightarrow\dfrac{|i+(x+iy)|}{|i-(x+iy)|}=1

\longrightarrow|i+x+iy|=|i-x-iy|

\longrightarrow|x+(y+1)i|=|-x+(1-y)i|

Taking the modulus,

\longrightarrow\sqrt{x^2+(y+1)^2}=\sqrt{(-x)^2+(1-y)^2}

\longrightarrow x^2+(y+1)^2=x^2+(y-1)^2

\longrightarrow(y+1)^2=(y-1)^2

\longrightarrow y^2+2y+1=y^2-2y+1

\longrightarrow2y=-2y

\longrightarrow4y=0

\longrightarrow\underline{\underline{y=0}}

This implies locus of z is x axis.

Similar questions