find the locus of z = x + iy if
Attachments:
Answers
Answered by
0
Dear Student ,
Please find below the solution to the asked query :
Let z=x+iy∣∣z−1∣∣+∣∣z−2∣∣=1∣∣x+iy−1∣∣+∣∣x+iy−2∣∣=1(x−1)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√+(x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√=1(x−1)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√ =1−(x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√Squaring on both sides , we get(x−1)2+y2=1+(x−2)2+y2−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)x2+1−2x+y2=1+x2+4−4x+y2−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)−2x=4−4x−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)2x−4=−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)Squaring on both sides , we get(2x−4)2=4((x−2)2+y2)4x2+16−16x=4(x2+4−4x+y2)4(x2+4−4x)=4(x2+4−4x+y2)y2=0 is the locus .
Hope this information will clear your doubts about the topic .
If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible .
яєgαя∂ѕ
ву
ѕмαят αвнιѕнєк
Please find below the solution to the asked query :
Let z=x+iy∣∣z−1∣∣+∣∣z−2∣∣=1∣∣x+iy−1∣∣+∣∣x+iy−2∣∣=1(x−1)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√+(x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√=1(x−1)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√ =1−(x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√Squaring on both sides , we get(x−1)2+y2=1+(x−2)2+y2−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)x2+1−2x+y2=1+x2+4−4x+y2−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)−2x=4−4x−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)2x−4=−2((x−2)2+y2‾‾‾‾‾‾‾‾‾‾‾‾√)Squaring on both sides , we get(2x−4)2=4((x−2)2+y2)4x2+16−16x=4(x2+4−4x+y2)4(x2+4−4x)=4(x2+4−4x+y2)y2=0 is the locus .
Hope this information will clear your doubts about the topic .
If you have any more doubts just ask here on the forum and our experts will try to help you out as soon as possible .
яєgαя∂ѕ
ву
ѕмαят αвнιѕнєк
anchal9203:
ky
Similar questions