Math, asked by Swupong, 1 year ago

find the logarithm of 400/to the base 2√5​

Answers

Answered by kaushik05
5

Answer:

 log_{2 \sqrt{5} }(400 )  \\  =  log_{2 \sqrt{5} }( {20}^{2} )  \\  = 2 log_{2 \sqrt{5} }(20)   \\  = 2 log_{ \sqrt{20} }(20)  \\  = 2 log_{ {20}^{ \frac{1}{2} } }(20)  \\  = 2 / \frac{1}{2}  log_{20}(20)  \\  = 2 \times  2  \\  = 4 \\

formula:

log a base a =1

hope this helps you☺️☺️

Answered by Anonymous
3

Answer:

\bold\red{4}

Step-by-step explanation:

 log_{2 \sqrt{5} }(400)   \\ \\  =    log_{ \sqrt{4 \times 5} }(400)   \\ \\  =  log_{ \sqrt{20} }(400)  \\  \\  =  log_{ {20}^{ \frac{1}{2} } }(400)  \\  \\  =  2  log_{20}(400)  \\  \\  = 2 log_{20}( {20}^{2} )  \\  \\  = 2 \times 2 log_{20}(20)  \\  \\  = 4 \times 1 \\  \\ 4

Properties of logarithms involved here are :-

 log_{ {a}^{x} }( {b}^{y} )  =  \frac{y}{x}   log_{a}(b)

 log_{a}(a) = 1

Similar questions