Math, asked by aks118910p94t5k, 1 year ago

find the logarithm of the number to the base 2 ​

Attachments:

Answers

Answered by doubtss0
3

Answer:

hope you get the solution

Attachments:
Answered by shadowsabers03
2

\large\text{$\dfrac{1}{\sqrt[7]{8}}$}

We know that  \dfrac{1}{x}=x^{-1}.  By this, we write,

\large\text{$\dfrac{1}{\sqrt[7]{8}}\ =\ \left(\sqrt[7]{8}\right)^{-1}$}

And we know that  \large\text{$\sqrt[m]{a}=a^{\frac{1}{m}}$}.  Using this,

\large\text{$\left(\sqrt[7]{8}\right)^{-1}\ =\ \left(8^\!^{\frac{1}{7}}\right)^{-1}$}

And, by using  (a^m)^n=a^{mn},

\large\text{$\left(8^\!^{\frac{1}{7}}\right)^{-1}\ =\ 8^\!^{-\frac{1}{7}}$}

Now,

\log_2\left(\dfrac{1}{\sqrt[7]{8}}\right)\ =\ \log_2\left(8^\!^{-\frac{1}{7}}\right)

Taking  8=2^3,

\large\text{$\log_2\left(8^\!^{-\frac{1}{7}}\right)\ =\ \log\left(\left(2^3\right)^\!^{-\frac{1}{7}}\right)\ =\ \log_2\left(2^\!^{-\frac{3}{7}}\right)=\bold{-\dfrac{3}{7}}$}

Hence  - 3/7  is the logarithm of  \large\text{$\dfrac{1}{\sqrt[7]{8}}$}.

Let's check!

\large\text{$2^{^{-\frac{3}{7}}}\ =\ (2^{-3})^{^{\frac{1}{7}}}\ =\ \left(\dfrac{1}{8}\right)^{\frac{1}{7}}\ =\ \sqrt[7]{\dfrac{1}{8}}\ =\ \dfrac{1}{\sqrt[7]{8}}$}

Similar questions