Math, asked by vedmantrapatoliya200, 9 months ago

find the
LSA and TSA of
cuboid whose 5.5 cm
b = 3.4
cm h = 2 cm​

Answers

Answered by amitkumar44481
43

AnsWer :

  • TSA of Cuboid = 73 cm³
  • LSA of Cuboid = 35.6 cm³

SolutioN :

Diagram :

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(5.6,5.6){$\tt{A}$}\put(11.1,5.8){$\tt{B}$}\put(11.08,8.9){$\tt{C}$}\put(5.46,8.7){$\tt{D}$}\put(3.55,10.15){$\tt{E}$}\put(3.55,7.15){$\tt{F}$}\put(9.14,10.235){$\tt{H}$}\put(9.14,7.3){$G$}\put(3.3,6.3){$\tt{3.4\:Cm}$}\put(7.75,6.2){$\tt{5.5\:Cm}$}\put(11.1,7.5){$\tt{2\:cm}$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

We have Formula :

 \tt \dagger \:  \:  \:  \:  \:  TSA = 2( LB+BH+HL)

\tt \dagger \:  \:  \:  \:  \:  LSA_{Cuboid }= 2( L + B)H

Where as,

  • L = 5 . 5 cm.
  • B = 3 . 4 cm.
  • H = 2 Cm.

Now,

 \tt \dagger \:  \:  \:  \:  \:  TSA \: of \:  Cuboid  = 2( LB+BH+HL)

 \tt :  \implies  TSA \: of C  = 2( 5.5 \times 3.4 + 3.4 \times 2 + 2 \times 5.5)

 \tt :  \implies  TSA \: of C  = 2( 18.7+ 6.8+11)

 \tt :  \implies  TSA \: of C  = 2( 36.5)

 \tt :  \implies  TSA \: of C  = 73 \: c {m}^{3} .

\rule{90}2

\tt \dagger \:  \:  \:  \:  \:  CSA_{Cuboid }= 2( L + B)H

\tt :  \implies LSA_{Cuboid }= 2( 5.5 + 3.4)2

\tt :  \implies LSA_{Cuboid }= 4( 8.9)

\tt :  \implies LSA_{Cuboid }= 35.6c {m}^{3} .

\rule{90}2

Answered by rishabhpandya2006
4

Step-by-step explanation:

CSA of cuboid is 35.6 CM sq.

TSA of cuboid is 73 cm sq.

CSA = 2*h(l+b)

=2*2(5.5+3.4)

=4*8.9

=35.6 CM sq.

TSA=2(l*b+b*h+h*l)

=2(5.5*3.4+3.4*2+2*5.5)

=2(18.7+6.8+11)

=2*36.5

=73 cm sq.

I hope that it would help you and Mark me as the brainliest and please follow me

Similar questions