Math, asked by vibhagauniyalishtwal, 9 months ago

find the LSA and TSA of the cylinder with the following dimensions radius 70 cm height 1 metre​

Answers

Answered by Anonymous
14

To Find :

  • Lateral surface of cylinder
  • Total surface area of cylinder.

Solution :

  • Radius of cylinder = 70cm
  • Height of cylinder = 1m = 100cm

As we know that,

 \underline{ \boxed{ \star \boldsymbol{ \: CSA \:    \: of  \: cylinder = 2\pi \: rh}}}

= 2 × 22/7 × 70 × 100

= 44 × 10 × 100

= 44 × 1000

= 44000 cm²

 \underline{ \boxed{ \star \boldsymbol{ \:TSA  \:    \: of  \: cylinder = 2\pi \: r(r + h)}}}

= 2 × 22/7 × 70 (70 + 100)

= 44 × 10 (170)

= 440 × 170

= 74800 cm²

Hence,

  • Lateral surface of the cylinder is 44000cm²
  • Total surface of cylinder is 74800cm²

━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
20

\bf{\underline{Question:-}}

  • find the LSA and TSA of the cylinder with the following dimensions radius 70 cm height 1 metre

\bf{\underline{Given:-}}

  • Radius (r) = 70cm
  • Height (h) = 1 m

we know ,

  • 1m = 100cm

\bf{\underline{To\:Find:-}}

  • Lateral surface area ( L.S.A or C.S.A ) = ?
  • Total surface area (T.S.A) = ?

\bf{\underline{Formula:-}}

  • {\underline{\boxed{\pink{Lateral\: surface\:area = 2πrh}}}}

  • {\underline{\boxed{\purple{Total\: surface\:area = 2πr(r+h)}}}}

\bf{\underline{Solution:-}}

→ L.S.A = 2πrh

→ L.S.A = 2 × 22/7 × 70 × 100

→ L.S.A = 2 × 22 × 10 × 100

→ L.S.A = 2 × 22 × 1000

→ L.S.A = 44 × 1000

→ L.S.A = 44000cm²

______________________________

Now,

→ T.S.A = 2πr ( r + h )

→ T.S.A = 2 × 22/7 × 70 × ( 70 + 100 )

→ T.S.A = 2 × 22 × 10 × 170

→ T.S.A = 44 × 1700

→ T.S.A = 74800cm²

\bf{\underline{Hence:-}}

  • L.s.A of cylinder 44000cm²
  • T.s.a of cylinder 74800cm²
Similar questions