Physics, asked by Anonymous, 1 year ago

Find the m if dot product of both vector are perpendicular to each other.

A = 2i + 3 j - 6k and B = 3i - mj + 6k

Answers

Answered by saketranjan91
6

Explanation:

vector A . vector B =ab cos theta

6-3m-36 = ab cos 90

-3m-30=0

-3m=30

so, m=-10

Answered by Anonymous
24

Answer:

m = - 10

Explanation:

Given :

\displaystyle \text{$ \vec A=2\hat{i}+3\hat{j-6\hat{k}}$ and }\\\\\displaystyle \text{$ \vec B=3\hat{i}-m\hat{j+6\hat{k}}$}

We know formula for dot product

\displaystyle \text{$ \vec A.\vec B=AB \ \cos\theta$ }

when cos θ = cos 90 = 0

Now formula become

\displaystyle \text{$ \vec A.\vec B=AB \ 0$ }\\\\\displaystyle \text{$ \vec A.\vec B=0$ }

\displaystyle \text{$ \vec A.\vec B=\left(2\hat{i}+3\hat{j-6\hat{k}}\right)\left(3\hat{i}-m\hat{j+6\hat{k}}\right)=0$ }\\\\\displaystyle \text{$2\times3-3\times m-6\times6=0$}\\\\\displaystyle \text{$6-3m-36=0$}\\\\\displaystyle \text{$-3m-30=0$}\\\\\displaystyle \text{$-m-10=0$}\\\\\displaystyle \text{$m=-10$}

Thus we get m = - 10.

Extra points :

\displaystyle \text{$\hat{i}\times \hat{i}=1$}\\\\\displaystyle \text{$\hat{j}\times \hat{j}=1$}\\\\\displaystyle \text{$\hat{k}\times \hat{k}=1$}\\\\\displaystyle \text{$\hat{i}\times \hat{k}=0$}\\\\\displaystyle \text{$\hat{j}\times \hat{k}=0$}\\\\\displaystyle \text{$\hat{k}\times \hat{i}=0$}\\\\

Similar questions