Physics, asked by imvaishnavic, 5 months ago

find the magnitude of a vector is equal to 3 ICAP + 2 j cap - 6 k cap and a unit vector in the direction of a vector​

Answers

Answered by prakashcor
1

Answer:

Given  

a

−2  

i

^

+3  

j

^

​  

+  

k

^

=2  

i

^

+3  

j

^

​  

+1  

k

^

 

Magnitude of  

a

−  

2  

2

+3  

2

+1  

2

 

​  

 

∣  

a

∣=  

4+9+1

​  

=  

14

​  

.

Unit vector in direction of  

a

=  

magnitudeof  

a

 

1

​  

×  

a

 

a

=  

14

​  

 

1

​  

[2  

i

^

+3  

j

^

​  

+1  

k

^

]

a

=  

14

​  

 

2

​  

 

i

^

+  

14

​  

 

3

​  

 

j

^

​  

+  

14

​  

 

1

​  

 

k

^

 

Thus, unit vector in direction of  

a

 

14

​  

 

2

​  

 

i

^

+  

14

​  

 

3

​  

 

j

^

​  

+  

14

​  

 

1

​  

 

k

^

.

solution

Given  

a

−2  

i

^

+3  

j

^

​  

+  

k

^

=2  

i

^

+3  

j

^

​  

+1  

k

^

 

Magnitude of  

a

−  

2  

2

+3  

2

+1  

2

 

​  

 

∣  

a

∣=  

4+9+1

​  

=  

14

​  

.

Unit vector in direction of  

a

=  

magnitudeof  

a

 

1

​  

×  

a

 

a

=  

14

​  

 

1

​  

[2  

i

^

+3  

j

^

​  

+1  

k

^

]

a

=  

14

​  

 

2

​  

 

i

^

+  

14

​  

 

3

​  

 

j

^

​  

+  

14

​  

 

1

​  

 

k

^

 

Thus, unit vector in direction of  

a

 

14

​  

 

2

​  

 

i

^

+  

14

​  

 

3

​  

 

j

^

​  

+  

14

​  

 

1

​  

 

k

^

.

solution

Given  

a

−2  

i

^

+3  

j

^

​  

+  

k

^

=2  

i

^

+3  

j

^

​  

+1  

k

^

 

Magnitude of  

a

−  

2  

2

+3  

2

+1  

2

 

​  

 

∣  

a

∣=  

4+9+1

​  

=  

14

​  

.

Unit vector in direction of  

a

=  

magnitudeof  

a

 

1

​  

×  

a

 

a

=  

14

​  

 

1

​  

[2  

i

^

+3  

j

^

​  

+1  

k

^

]

a

=  

14

​  

 

2

​  

 

i

^

+  

14

​  

 

3

​  

 

j

^

​  

+  

14

​  

 

1

​  

 

k

^

 

Thus, unit vector in direction of  

a

 

14

​  

 

2

​  

 

i

^

+  

14

​  

 

3

​  

 

j

^

​  

+  

14

​  

 

1

​  

 

k

^

.

solution

Explanation:

Answered by harisreeps
0

Answer:

The magnitude of a vector A=3i+2j-6k is 7 units and the unit vector in the direction of the vector is \frac{3i+2j-6k}{7}

Explanation:

  • A vector is a physical quantity described by both magnitude and direction
  • The component form of a vector is given by the formula

        A=ai+bj+ck

        where a,b,c are components along X, Y, Z axes

        i,j,k are unit vectors along X, Y, Z axes

  • The magnitude of that vector can be calculated as /A/=\sqrt{a^{2} +b^{2}+c^{2}  }
  • The unit vector in the direction of the vector is n=\frac{ai+bj+ck}{\sqrt{a^{2} +b^{2}+c^{2}  }}

From the question, we have

the component force of the vector A=3i+2j-6k

as compared to the above equation

a=3 \\b=2\\c=-6

now the magnitude of the vector /A/=\sqrt{3^{2} +2^{2}+6^{2}  } =7 unit

the unit vector along the given vector is A//A/=\frac{3i+2j-6k}{7}

Similar questions