Find the magnitude of angle A, if: 2 tan 3A . cos 3A - tan 3A + 1 = 2 cos 3A
( Trigonometrical ratios of standard angles )
Answers
Answered by
37
Step-by-step explanation:
Given Equation is 2 tan3A. cos3A - tan 3A + 1 = 2 cos 3A
⇒ 2 tan3A cos 3A - tan 3A + 1 - 2 cos 3A = 0
⇒ tan 3A(2 cos3A - 1) - (2cos3A - 1) = 0
⇒ (tan 3A - 1)(2cos 3A - 1) = 0
⇒ tan 3A = 1 (or) 2 cos 3A - 1 = 0
(i) When tan 3A = 1:
⇒ tan 3A = 1
⇒ tan 3A = tan 45
⇒ 3A = 45
⇒ A = 15°
(ii) When 2cos3A = 1:
⇒ 2 cos 3A = 1
⇒ cos 3A = 1/2
⇒ cos 3A = cos 60
⇒ 3A = 60
⇒ A = 20°
Therefore, Magnitude of A is 15° (or) 20°
Hope it helps!
BrainlyPromoter:
Great answer.
Answered by
31
Answer:
Either tan3A -1 =0 or 2cos3A -1=0
3A=45 or 3A=60
A=15 or A=20°
Thus A=15° or 20°
Similar questions
English,
8 months ago
Math,
8 months ago
Business Studies,
1 year ago
World Languages,
1 year ago
Computer Science,
1 year ago