Math, asked by akki9148, 1 year ago

Find the magnitude of component of 3i-2j k along the vector 12i 3j-4k

Answers

Answered by Pitymys
13

Let  \theta be the angle between the vectors 3i-2j+k and 12i+3j-4k. Then the magnitude of the component of along 12i+3j-4k is

  |3i-2j+k |\cos \theta=|3i-2j+k | \frac{(3i-2j+k ).(12i+3j-4k )}{|3i-2j+k ||12i+3j-4k|} \\<br /> |3i-2j+k |\cos \theta= \frac{(3i-2j+k ).(12i+3j-4k )}{|12i+3j-4k|} \\<br /> |3i-2j+k |\cos \theta= \frac{36-6-4}{\sqrt{12^2+3^2+4^2}}  \\<br /> |3i-2j+k |\cos \theta= \frac{26}{13}  \\<br /> |3i-2j+k |\cos \theta=2

Similar questions