find the mass of shotput ,if density is 7.8 gram per centimetre cube
Answers
Answer:
Given :
Radius of metallic sphere = 4.9 cm
And density of the metal = 7.8 gm / cm³
Volume of sphere = \sf \frac{4} {3}
3
4
π r³
⇒ \sf \frac{4}{3} \times \frac{22}{7} \times 4.9 \times 4.9 \times 4.9
3
4
×
7
22
×4.9×4.9×4.9
⇒ \sf \frac{1479.016} {3}
3
1479.016
cm³
Mass of the shot put = volume × density
⇒ \sf \frac{1479.016} {3} \times 7. 8 gm
3
1479.016
×7.8gm
⇒ 1479.016 × 2.6 gm
⇒ 3845. 44 gm
Hence, Mass of the shot put sphere is 3.845 kg. (approx)
Answer:
Answer :
The mass of the shot put is 3.845 kg.
Step-by-step explanation :
Given :
Radius of metallic sphere = 4.9 cm
And density of the metal = 7.8 gm / cm³
Volume of sphere = \sf \frac{4} {3} π r³
⇒ \sf \frac{4}{3} \times \frac{22}{7} \times 4.9 \times 4.9 \times 4.9
⇒ \sf \frac{1479.016} {3} cm³
Mass of the shot put = volume × density
⇒ \sf \frac{1479.016} {3} \times 7. 8 gm
⇒ 1479.016 × 2.6 gm
⇒ 3845. 44 gm
Hence, Mass of the shot put sphere is 3.845 kg. (approx)