Physics, asked by Daljeet2020, 1 day ago

find the mass of the earth if it's radius is 6.37×10^6m . the distance to the moon is 3.84×10^8m and the time period of Moon's revolution is 27.3 days.​

Answers

Answered by simra4825
1

Answer:

\huge\mathfrak\color{7FFFD4}Answer

Explanation:

 \sf \: Here, g=9.81m s−2 \\  \sf\:R=6.37×106m, r=3.84×108m \\ \sf \: T=27.3days =27.3×24×60×60s \\ \sf ∴M_{e} =  \frac{ {gR _{e}}^{2} }{G}  =  \frac{9.81 \times  {6.37 \times 10^{6} }^{2} }{6.67 \times 10^{ - 11} }  \\  \sf = 5.97 \times  {10}^{24} kg

Alternative method: Since the gravitational pull provides the required centripetal force, so

 \sf \: mr(2\pi/ {T}^{2} ) = GM_{e} {m/ r}^{2} or \: M_{e} =  \frac{ {4\pi}^{2} {r}^{3}  }{GT^{2} }  \\  \sf \:  =  \frac{4 \times  (22 \times 7)^{2}  \times  {(3.84 \times  {10}^{8} )}^{3} }{6.67 \times  {10}^{ - 11 } \times  {(27.3 \times 24 \times 60 \times 60)}^{2}  }  \\  \sf  = \: 6.02 \times  {10}^{24} kg

 \fbox\textsf\color{blue}Do\:Follow

 \fbox\textsf\color{blue}Mrk\:As\:Brainlist

Similar questions