Math, asked by anasmohammadarif, 1 month ago

Find the matrix A satisfying the matrix equation:
\left[\begin{array}{ccc}2&1\\3&2\\\end{array}\right] . A\left[\begin{array}{ccc}-3&2\\5 &-3\\\end{array}\right] = \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]

Please help with this question anyone

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given matrix equation is

 \rm :\longmapsto\:\rm \: \bigg[ \begin{matrix}2&1 \\ 3&2 \end{matrix} \bigg]A\bigg[ \begin{matrix} - 3&2 \\ 5& - 3 \end{matrix} \bigg] = \bigg[ \begin{matrix}1&0 \\ 0&1 \end{matrix} \bigg]

Let assume that,

\rm :\longmapsto\:B = \bigg[ \begin{matrix}2&1 \\ 3&2 \end{matrix} \bigg]

and

\rm :\longmapsto\:C = \bigg[ \begin{matrix} - 3&2 \\ 5& - 3 \end{matrix} \bigg]

So, given matrix equation can be rewritten as

\rm :\longmapsto\:BAC = I

Now,

 \red{ \sf{Premultiply \: by \: B^{-1} \:  and \: post \: multiply \: by \:  {C}^{ - 1}, \: we \: get}}

So,

\rm :\longmapsto\: {B}^{ - 1}BA {CC}^{ - 1} =  {B}^{ - 1}I {C}^{ - 1}

\rm :\longmapsto\:IAI =  {B}^{ - 1}  {C}^{ - 1}

\rm \implies\:\boxed{ \tt{ \: A =  {B}^{ - 1} {C}^{ - 1}  \: }} -  -  - (1)

Now,

We know,

 \sf \: If \: A = \bigg[ \begin{matrix}  a&b \\ c&d \end{matrix} \bigg], \: then \: adjA = \bigg[ \begin{matrix} d& - b \\  - c&a \end{matrix} \bigg]

and

\rm :\longmapsto\: |A|  = ad - bc

So,

\rm :\longmapsto\: {B}^{ - 1}

 \rm =  \: \dfrac{1}{ |B| } adjB

 \rm =  \:  \dfrac{1}{4 - 3} \bigg[ \begin{matrix}2& - 1 \\  - 3&2 \end{matrix} \bigg]

 \rm =  \:  \dfrac{1}{1} \bigg[ \begin{matrix}2& - 1 \\  - 3&2 \end{matrix} \bigg]

 \rm =  \:  \bigg[ \begin{matrix}2& - 1 \\  - 3&2 \end{matrix} \bigg]

 \rm \implies\:\boxed{ \tt{ \:  {B}^{ - 1}  =  \:  \bigg[ \begin{matrix}2& - 1 \\  - 3&2 \end{matrix} \bigg] \: }}

Now,

\rm :\longmapsto\: {C}^{ - 1}

 \rm =  \: \dfrac{1}{ |C| } adjC

 \rm =  \:  \dfrac{1}{9 - 10} \bigg[ \begin{matrix}  - 3& - 2 \\  - 5& - 3 \end{matrix} \bigg]

 \rm =  \:  \dfrac{1}{ - 1} \bigg[ \begin{matrix}  - 3& - 2 \\  - 5& - 3 \end{matrix} \bigg]

 \rm =  \:  \bigg[ \begin{matrix} 3& 2 \\   5& 3 \end{matrix} \bigg]

\rm \implies\:\boxed{ \tt{ \:  {C}^{ - 1}  \:  =  \: \bigg[ \begin{matrix} 3& 2 \\   5& 3 \end{matrix} \bigg] \: }}

Now, On substituting the values in

\rm \implies\:\boxed{ \tt{ \: A =  {B}^{ - 1} {C}^{ - 1}  \: }}

We get

\rm :\longmapsto\:A = \bigg[ \begin{matrix}2& - 1 \\  - 3&2 \end{matrix} \bigg] \times \bigg[ \begin{matrix} 3& 2 \\   5& 3 \end{matrix} \bigg]

\rm :\longmapsto\:A =\bigg[ \begin{matrix} 6 - 5& 4 - 3 \\ 10 - 9&  - 6 + 6 \end{matrix} \bigg]

\rm \implies\:\boxed{ \tt{ \: A = \bigg[ \begin{matrix} 1& 1 \\ 1& 0 \end{matrix} \bigg] \: }}

Similar questions