Math, asked by lenay, 9 months ago

find the matrix c such that ac=b​

Attachments:

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{A=\left(\begin{array}{cc}3&2\\-1&1\end{array}\right)}

\mathsf{B=\left(\begin{array}{cc}14&3\\2&4\end{array}\right)}

\mathsf{and\;AC=B}

\textbf{To find:}

\textsf{Matrix C}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{A=\left(\begin{array}{cc}3&2\\-1&1\end{array}\right)}

\mathsf{adjA=\left(\begin{array}{cc}1&-2\\1&3\end{array}\right)}

\mathsf{|A|=\left|\begin{array}{cc}3&2\\-1&1\end{array}\right|=3+2=5{\neq}0}

\mathsf{Now}

\mathsf{A^{-1}=\dfrac{1}{|A|}adjA}

\mathsf{A^{-1}=\dfrac{1}{5}\left(\begin{array}{cc}1&-2\\1&3\end{array}\right)}

\mathsf{Also}

\mathsf{AC=B}

\implies\mathsf{C=A^{-1}B}

\implies\mathsf{C=\dfrac{1}{5}\left(\begin{array}{cc}1&-2\\1&3\end{array}\right)\left(\begin{array}{cc}14&3\\2&4\end{array}\right)}

\implies\mathsf{C=\dfrac{1}{5}\left(\begin{array}{cc}14-4&3-8\\14+6&3+12\end{array}\right)}

\implies\mathsf{C=\dfrac{1}{5}\left(\begin{array}{cc}10&-5\\20&15\end{array}\right)}

\implies\boxed{\mathsf{C=\left(\begin{array}{cc}2&-1\\4&3\end{array}\right)}}

\textbf{Find more:}

Show that an orthogonal matrix is always invertible and find det (A).​

https://brainly.in/question/21858213

If A and B are invertible matrices of same order such that |(AB)-1 | =8 .if |A|=2 then| B | is

https://brainly.in/question/17628908

Similar questions