Math, asked by sakshi9433, 1 year ago

find the maxima and minima value this equation x^4 -8x^3 +22x^2 -24x​

Answers

Answered by ravi9848267328
4

Answer:

Step-by-step explanation:

easy

f(x) = x³ - 2x² + x + 6

Find the first derivative:

f(x) = x^4-8x³ + 22x² -24x

f'(x) =4 x^3-24 x^2+44 x-24

f'(x) = (x - 1)(x - 3)

(x -1) (x - 3) = 0

x = 1 or x = 3

Find the second derivative:

f'(x) = 4 x^3-24 x^2+44 x-24

f''(x) = 12x^2-48x+44

Find max / min point:

When x = 1

f''(x) =12*1^2-48*1+44

f''(x) = 8 > 0 minimum point

When x = 3

f''(x) = 12*3^2-48*3+44

f''(x) = 8 > 0

same points

Find minimum point:

When x = 8,

f(x) = x^4 -8x^3 +22x^2 -24x​

f(x) = 8^4-8*8^3+22*8^2-24*8

⇒ minimum point = 1216

Find the maximum point:

when x = 3

f(x) = 8^4-8*8^3+22*8^2-24*8

f(x) =1216

maxima and minima =1216

Answered by upcastphoenixx
0

Answer:

f(x) = x³ - 2x² + x + 6

Find the first derivative:

f(x) = x^4-8x³ + 22x² -24x

f'(x) =4 x^3-24 x^2+44 x-24

f'(x) = (x - 1)(x - 3)

(x -1) (x - 3) = 0

x = 1 or x = 3

Find the second derivative:

f'(x) = 4 x^3-24 x^2+44 x-24

f''(x) = 12x^2-48x+44

Find max / min point:

When x = 1

f''(x) =12*1^2-48*1+44

f''(x) = 8 > 0 minimum point

When x = 3

f''(x) = 12*3^2-48*3+44

f''(x) = 8 > 0

same points

Find minimum point:

When x = 8,

f(x) = x^4 -8x^3 +22x^2 -24x​

f(x) = 8^4-8*8^3+22*8^2-24*8

⇒ minimum point = 1216

Find the maximum point:

when x = 3

f(x) = 8^4-8*8^3+22*8^2-24*8

f(x) =1216

maxima and minima =1216

Step bro  ω≥

Similar questions