Math, asked by singhpreeti8915, 10 months ago

Find the maximum and minimum of:
Y=x³-3x+5

Answers

Answered by konrad509
0

y=x^3-3x+5\\y'=3x^2-3\\\\3x^2-3=0\\3(x^2-1)=0\\3(x-1)(x+1)=0\\x_0=-1 \vee x_0=1

If x\in(-\infty,-1)\cup(1,\infty) then y'>0

If x\in(-1,1) then y'<0

Therefore, there's a minimum at x=1 and a maximum at x=-1.

y_{min}=1^3-3\cdot 1+5=1-3+5=3\\y_{max}=(-1)^3-3\cdot(-1)+5=-1+3+5=7

Similar questions