English, asked by Anonymous, 11 months ago

Find the maximum and minimum value of 7 cos x + 24 sin x?​

Answers

Answered by sprao53413
5

Answer:

Maximum value of =v(49+576)=v(625)=25

Minimum value =-v(49+576)=-25

Answered by DhanyaDA
21

Given:

7cosx+24sinx

To find:

Maximum and minimum values of f(x)

Explanation:

\sf 7cosx + 24sinx

it can be compared to

\boxed{\sf acosx+bsinx+c}

Here

a=7,b=24,c=0

\boxed{\sf maximum\: value,M=c+\sqrt{a^2+b^2}}

substituting

M=0^2+\sqrt{7^2+49^2}

 =  >   \sqrt{49 + 576}  =  \sqrt{625}  \\  \\  = 25 \: units

Maximum value=25 units

\boxed{\sf minimum\: value,m=c-\sqrt{a^2+b^2}}

substituting

m=0^2-\sqrt{7^2+24^2}

 =  >  -  \sqrt{49 + 576}  =  -  \sqrt{625} \: \\  \\  =  - 25 \: units

Minimum value=-25 units

Similar questions