Math, asked by hcfgnb9408, 6 months ago

Find the maximum and minimum value of f[x]=3cosx+4sinx

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

f(x) = 3 \cos(x)  + 4  \sin(x)

 =  > f(x) = 5( \frac{3}{5}  \cos(x)  +  \frac{4}{5}  \sin(x) ) \\

Let sin(y) = 3/5 and cos(y) = 4/5

so,

 =  > f(x) = 5( \sin(y)  \cos(x)  +   \cos(y)   \sin(x) )

 =  > f(x) = 5 \sin(y + x)

We know that, -1 ≤ sin(x) ≤ 1

so,

  - 1 \leqslant  \sin(y + x)  \leqslant 1

 =  >  - 5 \leqslant 5 \sin(y + x)  \leqslant 5

 =  >  - 5 \leqslant f(x) \leqslant 5

Hence, maximum and minimum values of f(x) are 5 and -5

Similar questions