Math, asked by bunthi1652, 10 months ago

find the maximum and minimum value of f(x)= sinx+root 3 cosx

Answers

Answered by shadowsabers03
14

Given,

\longrightarrow\sf{f(x)=\sin x+\sqrt3\,\cos x}

Dividing and multiplying 2 on RHS,

\longrightarrow\sf{f(x)=2\left[\dfrac{\sin x+\sqrt3\,\cos x}{2}\right]}

\longrightarrow\sf{f(x)=2\left[\dfrac{1}{2}\,\sin x+\dfrac{\sqrt3}{2}\,\cos x\right]}

\longrightarrow\sf{f(x)=2\left[\cos60^o\sin x+\sin60^o\cos x\right]}

\longrightarrow\sf{f(x)=2\left[\sin x\cos60^o+\cos x\sin60^o\right]}

Since \sf{\sin A\cos B+\cos A\sin B=\sin(A+B),}

\longrightarrow\sf{f(x)=2\sin(x+60^o)}

Well, since \sf{\sin x\in[-1,\ 1],}

\longrightarrow\sf{\sin(x+60^o)\in[-1,\ 1]}

\longrightarrow\sf{2\sin(x+60^o)\in[-2,\ 2]}

That is,

\longrightarrow\sf{f(x)\in[-2,\ 2]}

Hence,

\longrightarrow\sf{\underline{\underline{\min(f(x))=-2}}}

\longrightarrow\sf{\underline{\underline{\max(f(x))=2}}}

Similar questions