Math, asked by karansinghsaggu, 1 day ago

Find the maximum and minimum value of

f(x) = 11 - 3 {sin}^{2}x + 5 {cos}^{2}x

Answers

Answered by mathdude500
52

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = 11 -  {3sin}^{2}x +  {5cos}^{2}x

In order to find the maximum and minimum value, let first reduce the given expression in terms of one Trigonometric function.

We know,

\boxed{\tt{  \: 1 + cos2x =  {2cos}^{2}x \: }} \\

and

\boxed{\tt{  \: 1 - cos2x =  {2sin}^{2}x \: }} \\

So, using these results, we get

\rm \: f(x) = 11 - \dfrac{3}{2}(1 - cos2x) + \dfrac{5}{2}(1 + cos2x)

\rm \: f(x) = 11 - \dfrac{3}{2} + \dfrac{3}{2} cos2x + \dfrac{5}{2} + \dfrac{5}{2} cos2x

\rm \: f(x) = 11+ \bigg(\dfrac{3 + 5}{2}\bigg) cos2x + \dfrac{5 - 3}{2}

\rm \: f(x) = 11+ \bigg(\dfrac{8}{2}\bigg) cos2x + \dfrac{2}{2}

\rm \: f(x) = 11+ 4cos2x + 1

\rm \: f(x) = 4cos2x + 12

Now, we know that,

\rm \:  - 1 \leqslant cos2x \leqslant 1

On multiply by 4, each term we get

\rm \:  - 4 \leqslant 4cos2x \leqslant 4

On adding 12 in each term, we get

\rm \: 12 - 4 \leqslant 4cos2x + 12 \leqslant 4 + 12

\rm \: 8 \leqslant f(x) \leqslant 16

\rm\implies \:8 \leqslant 11 -  {3sin}^{2}x +  {5sin}^{2}x \leqslant 16 \\

So,

Minimum value of f(x) = 8

Maximum value of f(x) = 16

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

1. The maximum and minimum value of the expression

\rm \: f(x) = a \: sinx \:  +  \: b \: cosx \: is \\  \\ \rm \: [ -  \sqrt{ {a}^{2}  +  {b}^{2}}, \: \sqrt{ {a}^{2}  +  {b}^{2}}] \\

\rm \: f(x) = a \: sinx \:  +  \: b \: cosx \: +  \: c \:  is \\  \\ \rm \: [c -  \sqrt{ {a}^{2}  +  {b}^{2}}, \: c + \sqrt{ {a}^{2}  +  {b}^{2}}] \\

2. Range of Trigonometric functions

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Answered by ItzNobita50
145

\sf\underline {Question:-}

 \sf \: find \: the \: maximum \: and \: minimum \\  \sf \: value :  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\red{f(x) = 11 - 3 {sin}^{2}x + 5 {cos}^{2}x}

\sf\underline {Answer:-}

 \sf \rightarrow \: please \: see \: the \: attatched \: file \:

Attachments:
Similar questions