Math, asked by devansh9257, 9 days ago

Find the maximum and minimum value of the function f(x) = 5 sinx + 12 cosx + 10​

Answers

Answered by harisreeps
1

Answer:

The maximum value of the function f(x) = 5 sinx + 12 cosx + 10​ is 22.29

explanation:

  • The maximum and minimum point of a function is the points where the function neither increase nor decrease
  • For a maximum point of a function Y, the second derivative of the function is greater than zero, (\frac{d^{2}Y }{dx^{2} }  is positive and for minimum point, it is less than zero(\frac{d^{2}Y }{dx^{2} } is negative)

STEP 1

The given function is f(x)=5sinx+12cosx+10

the first derivative is \frac{df(x)}{dx} =5cosx-12 sinx

STEP 2

equate the first derivative to zero to get the value of x

5cosx-12 sinx=0\\5cosx=12 sinx

sinx/cosx=5/12\\tanx=0.41\\x=22.29

STEP 3

put the value of x we get

f(22.2)=5sin22.2+12cos22.2+10=22.8

which is the maximum value of the function

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = 5sinx + 12cosx + 10 \\

\rm \: Divide \: and \: multiply \: by \:  \sqrt{ {5}^{2}  +  {12}^{2} } =  \sqrt{25 + 144} =  \sqrt{169} = 13 \\

So, above expression can be rewritten as

\rm \: f(x) = 13\bigg(\dfrac{5}{13}sinx  + \dfrac{12}{13}cosx  \bigg)  + 10 \\

Let assume that

\rm \: \dfrac{5}{13} = cosy \\

So,

\rm \: siny =  \sqrt{1 -  {cos}^{2}y } =  \sqrt{1 - \dfrac{25}{169} } =  \sqrt{ \dfrac{144}{169} } =  \dfrac{12}{13}  \\

So, above expression can be rewritten as

\rm \: f(x) = 13(sinx \: cosy \:  +  \: siny \: cosx) + 10 \\

\rm \: f(x) = 13sin(x + y) + 10  \:  \: where \: y \:  =  \:  {tan}^{ - 1} \dfrac{5}{12}  \\

Now, we know that

\rm \:  - 1 \leqslant sin(x + y) \leqslant 1 \\

So,

\rm \:  - 13 \leqslant 13 \: sin(x + y) \leqslant 13 \\

On adding 10 in each term, we get

\rm \:  - 13 + 10 \leqslant 13 \: sin(x + y)  + 10\leqslant 13 + 10 \\

\rm\implies \: - 3 \leqslant f(x) \leqslant 23 \\

So,

\rm\implies \:Maximum \: value \: of \: f(x) = 23 \\

and

\rm\implies \:Minimum \: value \: of \: f(x)  \: =   \: -  \: 3 \\

\rule{190pt}{2pt}

Short Cut Trick

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf asinx + bcosx & \sf [ - \sqrt{ {a}^{2} + {b}^{2} }, \: \: \sqrt{ {a}^{2} + {b}^{2} }] \\ \\ \sf asinx + bcosx + c & \sf [c - \sqrt{ {a}^{2} + {b}^{2} }, \: c + \sqrt{ {a}^{2} + {b}^{2} }] \end{array}} \\ \end{gathered} \\ \end{gathered}

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\

Similar questions