Math, asked by vangalasaipramod, 5 months ago

find the maximum and minimum value over R f( x)=13cosx+3√3sinx_4​

Answers

Answered by AtharvSable
1

Answer:

Let,

f

(

x

)

=

13

cos

x

+

3

3

sin

x

4

.

f

(

x

)

=

14

(

13

14

cos

x

+

3

3

14

sin

x

)

4

...

...

...

...

(

)

.

Note that,

(

13

14

)

2

+

(

3

3

14

)

2

=

169

14

2

+

27

14

2

=

196

14

2

=

1

.

This means that, the point

(

13

14

,

3

3

14

)

lies on the

unit circle :

x

2

+

y

2

=

1

.

Consequently,

a unique

θ

[

0

,

2

π

)

, such that,

cos

θ

=

13

14

and

sin

θ

=

3

3

14

...

...

...

...

(

)

.

Utilising this fact in

(

)

, we have,

f

(

x

)

=

14

{

cos

θ

cos

x

+

sin

θ

sin

x

}

4

,

or

,

f

(

x

)

=

14

cos

(

x

θ

)

4

.

But,

x

R

,

1

cos

(

x

θ

)

1

.

Multiplying by

14

>

0

,

14

14

cos

(

x

θ

)

14

,

x

R

.

Adding

4

,

18

14

cos

(

x

θ

)

4

10

,

x

R

.

x

R

,

18

f

(

x

)

10

.

f

min

=

18

and

f

max

=

10

.

Similar questions