Math, asked by jerrypradhan5, 5 months ago

Find the maximum and minimum values ,if any points at which these values occur for the following function |x+1|+2​

Answers

Answered by mathdude500
1

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{f(x) =  |x + 1|  + 2}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{maximum \: or \: minimum \: value}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

\begin{gathered}\bf\red{We \:  know,}\end{gathered}

\tt \:  \longrightarrow \:  \purple{ |x + 1|  \geqslant 0}

\tt \:  \longrightarrow \:  \green{adding \: 2 \: on \: both \: sides}

\tt \:  \longrightarrow \:  \pink{ |x + 1| + 2 \geqslant 2 }

\tt\implies \: \red{f(x) \geqslant 2}

\tt\implies \: \purple{f(x) \: have \: minimum \: value \: 2 \: and \: no \: maximum \: value}

Similar questions