Math, asked by meenasoni88712, 7 months ago

find the maximum and minimum values of 15 cos theta minus 8 sin theta​

Answers

Answered by rajeevr06
0

Answer:

 -  \sqrt{ {15}^{2} +  {8}^{2}  }  \leqslant 15 \: cos \alpha  - 8 \: sin \alpha  \leqslant  \sqrt{ {15}^{2}  +  {8}^{2} }

 -  \sqrt{ 225 + 64 }  \leqslant 15 \: cos \alpha  - 8 \: sin \alpha  \leqslant  \sqrt{ 225 + 64 }

 -  \sqrt{289  }  \leqslant 15 \: cos \alpha  - 8 \: sin \alpha  \leqslant  \sqrt{ 289}

 -  17  \leqslant 15 \: cos \alpha  - 8 \: sin \alpha  \leqslant  17

Maximus value = 17

Minimum Value = –17

Similar questions