Find the maximum and minimum values of
3 cosA + 4 sinA+5.
Answers
Answer:
Find the maximum valus of 3cos+4 sinA+5
Step-by-step explanation:
Answer
10 is the maximum value !
Step-by-step explanation
Let f ( x ) = 3 cos x + 4 sin x + 5 .
We have to find the maximum value of the given function .
In order to find the maximum value follow these steps :
Formula for maximum value
When we are to find the maximum value of a sin x + b cos x :
Maximum value = √ ( a² + b² )
Minimum value = - √ ( a² + b² )
Find the maximum value of 3 sin x + 4 cos x
hence the maximum value of 3 sin x + 4 cos x
= > √ ( 3² + 4² )
= > √ ( 9 + 16 )
= > √ 25
= > ± 5
The maximum value will be 5.
Find the maximum value of the function .
3 sin x + 4 cos x will have maximum value of 5.
Hence adding 5 both sides :-
= > 3 sin x + 4 cos x = 10 for maximum value .
Hence the maximum value of the given question will be 10