Math, asked by vsri82501, 1 month ago

find the maximum and minimum values of 4x^3+9x^2-12x+1​

Answers

Answered by ItzImran
27

\huge\color{lime}\ \boxed{\colorbox{black}{Answer : ♞ }}

 =  > 4x  ^ { 3  }  +9x  ^ { 2  }  -12x+1

The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of

ax^{n}  \: is  \:  \: nax^{n-1}.

 =  > 3\times 4x^{3-1}+2\times 9x^{2-1}-12x^{1-1}

\color{red}Multiply \: 3 \: times \: 4.

 =  > 12x^{3-1}+2\times 9x^{2-1}-12x^{1-1}

\color{red}Subtract \: 1 \: from \: 3.

 =  > 12x^{2}+2\times 9x^{2-1}-12x^{1-1}

\color{red}Multiply \: 2 \: times \: 9.

 =  > 12x^{2}+18x^{2-1}-12x^{1-1}

\color{red}Subtract \: 1 \: from \: 2.

 =  > 12x^{2}+18x^{1}-12x^{1-1}

\color{red}Subtract \: 1 \: from \: 1.

 =  > 12x^{2}+18x^{1}-12x^{0}

 \color{red}For \: any \: term \: t, \: t^{1}=t.

 =  > 12x^{2}+18x-12x^{0}

 \color{red}For \: any \: term \: t \: except \: 0, t^{0}=1.

Similar questions