find the maximum and minimum values of function
Answers
Equation: y = 2x³ - 15x² + 36x + 1
Find the first derivative:
f(x) = 2x³ - 15x² + 36x + 1
f'(x) = 6x² - 30x + 36
Find the max and min points
The max and min values happens when the first derivative = 0
6x² - 30x + 36 = 0
x² - 5x + 6 = 0
(x - 2)(x - 3) = 0
x = 2 or x = 3
Find the second derivative:
f'(x) = 6x² - 30x + 36
f''(x) = 12x - 30
When x = 2
f''(2) = 12(2) - 30 = - 6
f''(2) < 0 (It is a maximum point)
When x = 3
f''(3) = 12(3) - 30 = -6
f''(3) > 0 (It is a minimum point)
Answer: The maximum point occurs at x = 2 and minimum points at x = 3
Given Expression is y = 2x^3 - 15x^2 + 36x + 1.
On differentiating, we get
⇒ y' = 6x^2 - 30x + 36
We need to set the derivative equal to 0 in order to find maximum and minima.
⇒ y' = 0
⇒ 6x^2 - 30x + 36 = 0
⇒ 6(x^2 - 5x + 6) = 0
⇒ x^2 - 5x + 6 = 0
⇒ x^2 - 3x - 2x + 6 = 0
⇒ x(x - 3) - 2(x - 3) = 0
⇒ (x - 2)(x - 3) = 0
⇒ x = 2,3..
Differentiate the given equation again with respect to x.
⇒ y'' = 12x - 30.
Now,
Substitute x = 2 in y'':
⇒ 12x - 30
⇒ 12(2) - 30
⇒ -6.
Substitute x = 3 in y'':
⇒ 12x - 30
⇒ 12(3) - 30
⇒ 36 - 30
⇒ 6.
Hence,
At x = 2, the maximum value is -6.
At x = 3, and the minimum value is 6.
Hope it helps!