Find the maximum and minimum values of the function: x^3 - 3x^2 - 9x + 12
Answers
Answered by
4
Answer:
maximum and minimum values are 17 and (-15) respectively.
Step-by-step explanation:
let the given function be , f(x) = x³ - 3x² -9x +12
then, differentiating f(x) we get ,
f₁(x) = 3x² - 6x -9
again differentiating f₁(x) we get ,
f₂(x) = 6x -6
then, f₁(x) = 0
⇒3x² - 6x -9 = 0
⇒ x² - 2x -3 = 0
⇒ x² + ( -3 +1 )x +(-3)×1 =0
⇒(x-3)(x+1) =0
⇒x = 3 , (-1)
then , f₂(3) = 6×3 - 6 = 12 > 0 ; minima of f(x) lies at x = 3
and , f₂(-1) = 6×(-1) -6 = -12 < 0 ; maxima of f(x) lies at x = (-1)
∴ maximum value of f(x) is , f(-1) = (-1)³ - 3(-1)² - 9(-1) +12= 17
∴ minimum value of f(x) is , f(3) = (3)³ - 3(3)² - 9(3) +12 = (-15)
Similar questions