Physics, asked by StrongGirl, 9 months ago

Find the maximum angular displacement of the rod. if particle sticks after collision?

Attachments:

Answers

Answered by amansharma264
12

ANSWER.

 \sf \to \: maximum \: angular \: displacement \: of \: rod \:  =63 \degree

Option [ 1 ] is correct answer.

EXPLANATION.

 \sf \to \: as \: we \: know \: that \:  \\  \\  \sf \to \: angular \: momentum \implies \:  l_{i} =  l_{f} \\  \\  \sf \to \: mvl \:  = i \omega \\  \\  \sf \to \: mvl \:  = (ml {}^{2}  +   \frac{(2m {l}^{2} )}{3}   \omega) \\  \\  \sf \to \: mvl \:  =  \frac{5m {l}^{2} }{3}  \times  \omega \\  \\  \sf \to \:  \omega \:  =  \frac{3v}{5l}

 \sf \to \:  \dfrac{1}{2} i \omega {}^{2}  = mgl(1 -  \cos( \theta) ) + 2mg \dfrac{l}{2} (1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{1}{2}  \times ( \frac{5}{3} m {l}^{2} ) \times ( \frac{3v}{5l} ) {}^{2}  = mgl(1 -  \cos( \theta) ) + mgl(1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{1}{2}  \times ( \frac{5}{3}ml {}^{2}  ) \times ( \frac{9v {}^{2} }{25 {l}^{2} } ) = 2mgl(1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{ 3mv {}^{2} }{2 \times 5}  = 2mgl(1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{3 \times 36}{10}  = 2gl(1 -  \cos( \theta) )

 \sf \to \:  \dfrac{3 \times 36}{10 \times 2 \times 10}  = 1 -  \cos( \theta) \\  \\  \sf \to \:  \frac{27}{50} = 1 -  \cos( \theta)  \\  \\  \sf \to \: 1 -  \frac{27}{50}    =  \cos( \theta) \\  \\  \sf \to \:  \frac{50 - 27}{50} =  \cos( \theta)    \\  \\  \sf \to \:  \frac{23}{50}  =  \cos( \theta)  \\  \\  \sf \to \:  \cos( \theta)  \approx \: 63 \degree

Answered by xXMarziyaXx
0

ANSWER.

 \sf \to \: maximum \: angular \: displacement \: of \: rod \:  =63 \degree

Option [ 1 ] is correct answer.

EXPLANATION.

 \sf \to \: as \: we \: know \: that \:  \\  \\  \sf \to \: angular \: momentum \implies \:  l_{i} =  l_{f} \\  \\  \sf \to \: mvl \:  = i \omega \\  \\  \sf \to \: mvl \:  = (ml {}^{2}  +   \frac{(2m {l}^{2} )}{3}   \omega) \\  \\  \sf \to \: mvl \:  =  \frac{5m {l}^{2} }{3}  \times  \omega \\  \\  \sf \to \:  \omega \:  =  \frac{3v}{5l}

 \sf \to \:  \dfrac{1}{2} i \omega {}^{2}  = mgl(1 -  \cos( \theta) ) + 2mg \dfrac{l}{2} (1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{1}{2}  \times ( \frac{5}{3} m {l}^{2} ) \times ( \frac{3v}{5l} ) {}^{2}  = mgl(1 -  \cos( \theta) ) + mgl(1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{1}{2}  \times ( \frac{5}{3}ml {}^{2}  ) \times ( \frac{9v {}^{2} }{25 {l}^{2} } ) = 2mgl(1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{ 3mv {}^{2} }{2 \times 5}  = 2mgl(1 -  \cos( \theta) ) \\  \\  \sf \to \:  \frac{3 \times 36}{10}  = 2gl(1 -  \cos( \theta) )

 \sf \to \:  \dfrac{3 \times 36}{10 \times 2 \times 10}  = 1 -  \cos( \theta) \\  \\  \sf \to \:  \frac{27}{50} = 1 -  \cos( \theta)  \\  \\  \sf \to \: 1 -  \frac{27}{50}    =  \cos( \theta) \\  \\  \sf \to \:  \frac{50 - 27}{50} =  \cos( \theta)    \\  \\  \sf \to \:  \frac{23}{50}  =  \cos( \theta)  \\  \\  \sf \to \:  \cos( \theta)  \approx \: 63 \degree

#BE BRAINLY.

Similar questions