Math, asked by kishormistry576, 2 months ago

Find the maximum or minimum value of cosx + sinx-1​

Answers

Answered by senboni123456
2

Step-by-step explanation:

 Let y=\sin(x) + \cos(x) -1

 \implies \: y =  \sqrt{2} ( \frac{1}{ \sqrt{2} }  \sin(x)  +  \frac{1}{ \sqrt{2} }  \cos(x) ) - 1 \\

 \implies \: y =  \sqrt{2}  \sin(x +  \frac{\pi}{4} )  - 1 \\

Now,

 - 1 \leqslant  \sin(x +  \frac{\pi}{4} )  \leqslant 1

  \implies-  \sqrt{2}  \leqslant  \sqrt{2}  \sin(x +  \frac{\pi}{4} )  \leqslant  \sqrt{2}  \\

  \implies-  \sqrt{2}  - 1 \leqslant  \sqrt{2}  \sin(x +  \frac{\pi}{4} )  - 1 \leqslant  \sqrt{2}   - 1\\

Minimum value =  -(\sqrt{2}+1)

Maximum value = ( \sqrt{2}-1)

Similar questions