Math, asked by NITESH761, 3 days ago

Find the maximum sum of the series:
\rm 20+ 19 \dfrac{1}{3} + 18 \dfrac{2}{3}+ ...


Answers

Answered by user0888
42

\Large\text{\underline{\underline{Explanation}}}

Step 1.

The A.P. sum attains the maximum value at which the term is non-negative.

So, consider where the single term is non-negative -

\large\text{$\cdots\longrightarrow 20-\dfrac{2}{3}(n-1)\geq0.$}

Let's solve the inequality.

\large\text{$\cdots\longrightarrow 60-2(n-1)\geq0$}

\large\text{$\cdots\longrightarrow -2n+62\geq0$}

\large\text{$\cdots\longrightarrow n\leq31$}

So, at the 31st term, the A.P. sum attains its maximum value.

Step 2.

We know that -

\large\text{$\cdots\longrightarrow\boxed{S=\dfrac{n(a+l)}{2}.}$}

From the given A.P., -

  • \large\text{$a=20.$}
  • \large\text{$l=0.$}
  • \large\text{$n=31.$}

Hence, the maximum value of the sum is -

\large\text{$\cdots\longrightarrow S=\dfrac{31}{2}\times(20+0)$}

\large\text{$\cdots\longrightarrow\boxed{S=310.}$}

Answered by Anonymous
146

\bf \underline{\:  Provided  \: series \:  with \:  us }:

\rm 20+ 19 \dfrac{1}{3} + 18 \dfrac{2}{3}+ ...

\bf \underline{\:What\: we\: have \: to\: calculate }:

\rm \: Maximum  \: sum \:  of  \: given  \: series

\bf \underline{\:Step\:by\: step \: explanation\: }:

 \bigstar \: \small \text{First convert the series into a simpler form}

 \rm \: The  \: given  \: series \:  we \:  can \: be \: written  \: as  :

 \rm \implies \:  \dfrac{60}{3} +  \dfrac{58}{3}  +  \dfrac{56}{3} +  \dfrac{54}{3} + ... \dfrac{2}{3} + 0

 \bigstar \: \small \text{Check whether the series is in A.P }\small\text{or not by finding common difference}

 \rm \: The \:  common  \: difference  \: is

 \rm \implies \: d =\dfrac{58}{3}   -  \dfrac{60}{3}  =  - \dfrac{2}{3}

 \rm \star \:  Note

 \rm \: We  \: take \:  the  \: first \:   \: term \:  of  \: the \:  series ,

 \rm \: a =   \dfrac{60}{3}

 \bf \bigstar \: Here

 \rm \implies \: a + (n-1)d<0

 \implies  \rm\:  \dfrac{60}{3}  + (n - 1)  - \dfrac{2}{3}

 \rm \implies \: n > 31

\bf \bigstar \: Now:

 \rm \implies \: a \: 31 = a + 30 \: d

  \rm\implies \: \dfrac{60}{3}  \times 31 =  \dfrac{60}{3}  + 30 + ( -  \dfrac{2}{3} )

 \implies \: 0

 \rm \: Therefore \:  the  \: 0 \:  is \:  last  \: term  \: of  \: given  \: series

 \rm  \: Since \:  the  \: difference  \: between \:  any  \: two \rm \: consecutive  \: terms  \: is  \: same \:  in \:  given  \: series \rm \:  so \:  the  \: given \: series \:  is \:  in \:  A.P

 \rm \implies\:  d \: =   \dfrac{56}{3}  -  \dfrac{58}{3}  =   - \dfrac{2}{3}

 \rm \implies\:  d \: =   \dfrac{54}{3}  -  \dfrac{54}{3}  =   - \dfrac{2}{3}

\rm \: As \ in  \: A.P.  \: the \:  terms  \: are \:  given \:  by  \: this \:  formula

\rm{ t n= a+(n1) d}

\rm{Where}

\rm \star \: {a =   \dfrac{60}{3} }

\rm \star \: {d =   -  \dfrac{2}{3} }

\rm{The \:  term  \: will  \: become \:  negative \:  after  \: some  \: stage}\rm{as \:  common  \: difference \:  is  \: negative.}\rm{So \:  sum \:  is  \: maximum \:  if  \: positive \:  terms \:  are \:  added.}

\rm{By  \: putting  \: this \: value}

\rm{\implies tn \:  = \:  \dfrac{60}{3} +(n−1)   -( \dfrac{2}{3}  )   \geqslant  0}

\rm{\implies \:  \dfrac{60}{3} = (n - 1)  \: \dfrac{2}{3} }

\rm{\implies \: 62 \geqslant 2n }

\rm{\implies \: 31 \geqslant n }

\rm \: Hence \:  sum \:  of  \: 31 \:   \: term  \: is \:  maximum \:  and \:  are \:  non -  negative  \:

\sf\therefore\underline{Maximum  \:  \: sum}

 \rm \therefore Sn =  \dfrac{n}{2} \:  (first \:  term + last  \: term)

\rm \implies \dfrac{31}{2} \:  ( \dfrac{60}{3}  +  0 )

 \rm \implies \: 31 \times 10

 \rm \implies \boxed{310}

\sf\therefore\underline{Therefore}

\rm \therefore \: Maximum  \: sum \:  of  \: given  \: series \: is \: 310

Similar questions