Math, asked by Anonymous, 11 months ago

Find the maximum value of 4sin^2x + 3cos^x + sinx/2 + cosx/2 ? ​

Answers

Answered by Anonymous
76

Answer:

Maximum value = 4 + √2.

✔️Hope it will help you.✔️

Attachments:
Answered by kingofself
12

Answer:

Maximum value of 4 \sin ^{2 x}+3 \cos ^{x}+\sin \frac{x}{2}+\cos \frac{x}{2}=4+√2

Given Data:

4 \sin ^{2 x}+3 \cos ^{x}+\sin \frac{x}{2}+\cos \frac{x}{2}

To Find:

Maximum value?

Step 1:

I=4 \sin 2 x+3(1-\sin 2 x)+\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)

I=4 \sin 2 x+3(1-\sin 2 x)+\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)

I =4 \sin 2 x+3-3 \sin 2 x+\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)

Step 2:

I=4 \sin 2 x+3-3 \sin 2 x+\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)

I=\sin 2 x+3+\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)

I=\sin 2 x+3+\sin \left(\frac{x}{2}\right)+\cos \left(\frac{x}{2}\right)

\left.I=\sin 2 x+3+2-\sqrt{[12-\sqrt{\sin \left(x^{2}\right)}}+\cos \left(x^{2}\right) \times 12\right

Step 3:

I=\sin 2 x+3+2\left[12 \sin \left(x^{2}\right)+\cos \left(x^{2}\right) 12\right]

=3+\sin 2 x+2-\sin \left[\pi 4+x^{2}\right]

=3+\sin 2 x+2 \sin \left[\pi^{4}+x^{2}\right] \sin \left(\pi^{4}+x^{2}\right)

=3+\sin 2 x+2 \sin \left[\pi^{4}+x^{2}\right] \sin \left(\pi^{4}+x^{2}\right)

=\sin \left(\pi^{4}+x^{2}\right)=1

Step 4:

Whenx=\pi 2 x=\pi^{2}

i.e. \sin \left(\pi^{4}+\pi^{4}\right)=\sin \left(\pi^{2}\right)=1 \sin \left(\pi^{4}+\pi^{4}\right)=\sin \left(\pi^{2}\right)=1

Step 5:

Maxi =x=\pi 2 I=x=\pi^{2}

I (at x=\pi^{2})  =3+\sin 2\left(\pi^{2}\right)+\sqrt{2}-I\left(a t x=\pi^{2}\right)=3+\sin 2\left(\pi^{2}\right)+\sqrt{2}

=3+1+\sqrt{2}

=4+\sqrt{2}

Similar questions