Math, asked by WillYouHateMe, 4 months ago

find the mean median and mode​

Attachments:

Answers

Answered by Fαírү
147

\large\bold{\underline{\underline{Answer:-}}}

Mean    =  42.2

Median = 32.5

Mode    = 13.1

_____________________

\large\bold{\underline{\underline{Explanation:-}}}

\begin{array}{| c | c | c | c | c |}\cline{1-5} \bold{C.I}&\bold{Fq\;(f)}&\bold{CM\:(x)}&\bold{Cf}&\bold{fx} \\ \cline{1-5} 10-20&4&15&4&60 \\ \cline{1-5} 20-30&8&25&12&200\\ \cline{1-5} 30-40&10&35&22&350\\ \cline{1-5} 40-50&12&45&34&540\\ \cline{1-5} 50-60&10&65&44&550\\ \cline{1-5} 60-70&4&55&48&260\\ \cline{1-5} 70-80&2&75&50&150\\ \cline{1-5} &\bold{\sum f=50}&&&\bold{\sum fx=2110} \\ \cline{1-5}\end{array}

_____________________

Formula's which is used in this question ↓

\boxed{\implies\:Mean=\dfrac{\sum fx}{\sum f}}

\boxed{\implies\:Median=l+h\:\dfrac{N/2-Cf}{f}}

\boxed{\implies\:Mode=3\times Median-2\times Mean}

_____________________

MEAN OF THE DATA :-

\implies\:\overline{x}=\dfrac{\sum fx}{\sum f}\\\\\\\implies\:\overline{x}=\dfrac{2110}{50}\\\\\\\implies\:\overline{x}=42.2

\huge{\boxed{\therefore\:Mean=42.2}}

_____________________

MEDIAN OF THE DATA :-

Here,

Lower Limit [l] = 40

Height [h] = Upper limit - Lower Limit = 10

N = 50 ⇒ N/2 = 25

Cumulative Frequency [Cf] =34

Frequency [f] = 12

\boxed{\implies\:Median=l+h\:\dfrac{N/2-Cf}{f}}\\\\\\\implies\:Median=40+10\:\dfrac{25-34}{12}\\\\\\\implies\:Median=40+5\:\dfrac{-9}{6}\\\\\\\implies\:Median=32.5

\huge{\boxed{\therefore\:Median=32.5}}

_____________________

MODE OF THE GIVEN DATA :-

⇒ Mode = 3×Median - 2×Mean

⇒ Mode = 3×32.5 - 2×42.2

⇒ Mode = 97.5 - 84.4

⇒ Mode = 13.1

\huge{\boxed{\therefore\:Mode=13.1}}

_____________________

Similar questions