Math, asked by hv6785187, 3 months ago

Find the mean, median and mode of the following data :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \small\boxed{\begin{array}{c |c} \tt{Classes} & \tt{Frequency} \\ \dfrac{\qquad\qquad}{ \sf 0-10} &\dfrac{\qquad\qquad}{ \sf 5} & \\ \dfrac{\qquad\qquad}{ \sf 10-20} &\dfrac{\qquad\qquad}{ \sf 10} & \\ \dfrac{\qquad\qquad}{ \sf 20-30} &\dfrac{\qquad\qquad}{ \sf 18} & \\ \dfrac{\qquad\qquad}{ \sf 30-40} &\dfrac{\qquad\qquad}{ \sf 30} & \\ \dfrac{\qquad\qquad}{ \sf 40-50} &\dfrac{\qquad\qquad}{ \sf 20} & \\ \dfrac{\qquad\qquad}{ \sf 50-60} &\dfrac{\qquad\qquad}{ \sf 12} & \\ \dfrac{\qquad\qquad}{ \sf 60-70} &\dfrac{\qquad\qquad}{ \sf 5} &\end{array}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Calculation of Mode :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \small\boxed{\begin{array}{c |c} \tt{Classes} & \tt{Frequency} \\ \dfrac{\qquad\qquad}{ \sf 0-10} &\dfrac{\qquad\qquad}{ \sf 5} & \\ \dfrac{\qquad\qquad}{ \sf 10-20} &\dfrac{\qquad\qquad}{ \sf 10} & \\ \dfrac{\qquad\qquad}{ \sf 20-30} &\dfrac{\qquad\qquad}{ \sf 18} & \\ \dfrac{\qquad\qquad}{ \sf 30-40} &\dfrac{\qquad\qquad}{ \sf 30} & \\ \dfrac{\qquad\qquad}{ \sf 40-50} &\dfrac{\qquad\qquad}{ \sf 20} & \\ \dfrac{\qquad\qquad}{ \sf 50-60} &\dfrac{\qquad\qquad}{ \sf 12} & \\ \dfrac{\qquad\qquad}{ \sf 60-70} &\dfrac{\qquad\qquad}{ \sf 5} &\end{array}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

We know that,

\boxed{{{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}}

where,

 \sf \:  \:  \:  \:  \:  \bull \:  \:  \: l \: is \: lower \: limit \: of \: modal \: class

 \sf \:  \:  \:  \:  \:  \bull \:  \:  \: \sf{f_0} \:  is  \: frequency \:  of  \: class \:  preceding \:  modal \:  class

 \sf \:  \:  \:  \:  \:  \bull \:  \:  \: \sf{f_1} \:  is  \: frequency \:  of \:  modal \:  class

 \sf \:  \:  \:  \:  \:  \bull \:  \:  \: \sf{f_2} \:  is  \: frequency \:  of \:  class \: succeeding \: modal \:  class

 \sf \:  \:  \:  \:  \:  \bull \:  \:  \: h \: is \: height \: modal \:  class

Here,

Modal class = 30 - 40

Thus,

\sf \:  \:  \:  \:  \:  \bull \:  \:  \: l = 30

\sf \:  \:  \:  \:  \:  \bull \:  \:  \: h = 10

\sf \:  \:  \:  \:  \:  \bull \:  \:  \: f_0 = 18

\sf \:  \:  \:  \:  \:  \bull \:  \:  \: f_1 = 30

\sf \:  \:  \:  \:  \:  \bull \:  \:  \: f_2 = 12

Thus,

 \red{\rm :\longmapsto\:{{\bf{Mode = l + \bigg(\dfrac{f_1 - f_0}{2f_1 - f_0 - f_2} \bigg) \times h }}}}

\rm :\longmapsto\:{{\bf{Mode = 30+ \bigg(\dfrac{30 - 18}{2 \times 30 - 18 - 12} \bigg) \times 10 }}}

\rm :\longmapsto\:{{\bf{Mode = 30+ \bigg(\dfrac{12}{60 - 30} \bigg) \times 10 }}}

\rm :\longmapsto\:{{\bf{Mode = 30+ \bigg(\dfrac{12}{30} \bigg) \times 10 }}}

\rm :\longmapsto\:{{\bf{Mode = 30+ \bigg(\dfrac{12}{3} \bigg) }}}

\rm :\longmapsto\:{{\bf{Mode = 30+ 4 }}}

\red{\rm :\longmapsto\:{{\bf{Mode = 34 }}}}

Calculation of Median :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \small\boxed{\begin{array}{c |c|c} \tt{Classes} & \tt{Frequency}& \tt{c.f.} \\ \dfrac{\qquad\qquad}{ \sf 0-10} &\dfrac{\qquad\qquad}{ \sf 5} &\dfrac{\qquad\qquad}{ \sf 5}& \\ \dfrac{\qquad\qquad}{ \sf 10-20} &\dfrac{\qquad\qquad}{ \sf 10}&\dfrac{\qquad\qquad}{ \sf 15} & \\ \dfrac{\qquad\qquad}{ \sf 20-30} &\dfrac{\qquad\qquad}{ \sf 18}&\dfrac{\qquad\qquad}{ \sf 33} & \\ \dfrac{\qquad\qquad}{ \sf 30-40} &\dfrac{\qquad\qquad}{ \sf 30}&\dfrac{\qquad\qquad}{ \sf 63} & \\ \dfrac{\qquad\qquad}{ \sf 40-50} &\dfrac{\qquad\qquad}{ \sf 20}&\dfrac{\qquad\qquad}{ \sf 83} & \\ \dfrac{\qquad\qquad}{ \sf 50-60} &\dfrac{\qquad\qquad}{ \sf 12}&\dfrac{\qquad\qquad}{ \sf 95} & \\ \dfrac{\qquad\qquad}{ \sf 60-70} &\dfrac{\qquad\qquad}{ \sf 5}&\dfrac{\qquad\qquad}{ \sf 100} &\end{array}} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\boxed{ \bf Median= l + \Bigg \{h \times \dfrac{ \bigg( \dfrac{N}{2} - cf \bigg)}{f} \Bigg \}}

Here,

  • l denotes lower limit of median class

  • h denotes width of median class

  • f denotes frequency of median class

  • cf denotes cumulative frequency of the class preceding the median class

  • N denotes sum of frequency

According to the question,

Here,

  • N = 100

So,

  • N/2 = 50

Hence,

  • Median class = 30 - 40

so,

  • l = 30

  • h = 10,

  • f = 30,

  • cf = cf of preceding class = 33

On substituting the values, we get

\rm :\longmapsto\:{ \bf Median= 30 + \Bigg \{10 \times \dfrac{ \bigg( 50 - 33 \bigg)}{30} \Bigg \}}

\rm :\longmapsto\:{ \bf Median= 30 + \Bigg \{ \dfrac{ 17}{3} \Bigg \}}

\rm :\longmapsto\:{ \bf Median=  \dfrac{90 + 17}{3} }

\rm :\longmapsto\:{ \bf Median=  \dfrac{107}{3} }

Calculation of Mean

We know,

Empirical Formula,

\bf :\longmapsto\:Mode = 3Median - 2Mean

\rm :\longmapsto\:34 = 3 \times \dfrac{107}{3}  - 2Mean

\rm :\longmapsto\:34 = 107  - 2Mean

\rm :\longmapsto\:34  - 107 =   - 2Mean

\rm :\longmapsto\: - 73 =   - 2Mean

\bf\implies \:Mean = 36.5

Similar questions