Math, asked by samimalek, 3 months ago

Find the mean, median and the mode of the following frequency distribution. Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 frequency 4 6 8 12 10 5 5​

Answers

Answered by sethrollins13
226

For Mean :

  • frequency (fi) = 50
  • fi xi = 1860

Using Formula :

\longmapsto\tt\boxed{Mean=\dfrac{\sum\:fixi}{fi}}

Putting Values :

\longmapsto\tt{Mean=\cancel\dfrac{1860}{50}}

\longmapsto\tt\bf{Mean=37.2}

For Mode :

  • {f}_{0}=10
  • {f}_{1}=12
  • {f}_{2}=8
  • l = 40
  • h = 10

Using Formula :

\longmapsto\tt\boxed{Mode=l+\dfrac{{f}_{1}-{f}_{0}}{{2f}_{1}-{f}_{0}-{f}_{2}}\times{h}}

Putting Values :

\longmapsto\tt{40+\bigg(\dfrac{12-10}{24-18}\bigg)\times{10}}

\longmapsto\tt{40+\dfrac{2}{6}\times{10}}

\longmapsto\tt{40+\dfrac{10}{3}}

\longmapsto\tt{40+3.3}

\longmapsto\tt\bf{43.3}

For Median :

  • n / 2 = 50/2 = 25
  • l = 40
  • h = 10
  • cf = 26

Using Formula :

\boxed{Median=l+\bigg(\dfrac{\dfrac{n}{2}-cf}{f}\bigg)\times{h}}

Putting Values :

\longmapsto\tt{40=\bigg(\dfrac{25-26}{12}\bigg)\times{10}}

\longmapsto\tt{40+\dfrac{(-1)}{12}\times{10}}

\longmapsto\tt{40-\dfrac{10}{12}}

\longmapsto\tt{40-0.8}

\longmapsto\tt\bf{39.2}

___________________

  • {f}_{0}=class preceding the modal class .
  • {f}_{1}=frequency of modal class .
  • {f}_{2}=class secceeding the modal class .
  • l = lower limit
  • h = class size
  • n = number of observations
  • cf = cumulative frequency of class preceding the median class .

___________________

Attachments:
Answered by RevengeSoul
77

Answer:

  • Mean =7.14

  • Median =7

  • Mode = 4

Step-by-step explanation:

Mean = sum of observation/no. of observation

=(4+4+5+7+8+10+12)/7

=50/7

= 7.14

Median = (n+1)/2

n= no. of observations

{(7+1)/2}n^th term

4 th term

arrange in ascending order

4,4,5,7,8,10,12

Median =7

Mode is the number occurring most of the times of all observations

Mode =4

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions