Math, asked by chidu3917, 10 months ago

Find the mean ,mode and the median lifetime of the 100 tube lights of the following data lifetime 1000-1099,1100-1199,1200-1299,1300-1399,1400-1499,1500-1599 ,1600-1699,1700-1799,1800-1899 frequency 5,9,11,14,18,17,12,9,5

Answers

Answered by AditiHegde
12

Given:

Lifetime 1000-1099,1100-1199,1200-1299,1300-1399,1400-1499,1500-1599 ,1600-1699,1700-1799,1800-1899

Frequency 5,9,11,14,18,17,12,9,5

To find:

Find the mean, mode and the median lifetime of the 100 tube lights of the above data.

Solution:

From given, we have

Lifetime         Frequency    Mid-point(m)       f × m         cf

1000-1099           5                1049.5             5247.5         5

1100-1199             9                 1149.5             10345.5        14      

1200-1299           11                1249.5             13744.5         25

1300-1399           14                1349.5             18893           39

1400-1499           18                1449.5             26091           57

1500-1599           17                1549.5             26341.5         74

1600-1699           12                1649.5             19794            86

1700-1799            9                 1749.5             15745.5         95

1800-1899           5                  1849.5             9247.5         100

                    ∑f = 100                                     ∑f × m = 145450

Mean = ∑ f × m / ∑f = 145450/100 = 1454.5

Median = cumulative frequency greater than or equal to ∑f/2

∑f/2 = 100/2 = 50

∴ The median class is 1399.5-1499.5.

Now,

∴L=lower boundary point of median class =1399.5

∴n=Total frequency =100

∴cf=Cumulative frequency of the class preceding the median class =39

∴f=Frequency of the median class =18

∴c=class length of median class =100

M=L+\dfrac{\frac{n}{2}-cf}{f}\times c\\\\M=1399.5+\dfrac{50-39}{18}\times 100

Median = 1460.6111

Mode

Here, the maximum frequency is 18.

∴ The mode class is 1399.5-1499.5.

∴L=lower boundary point of mode class =1399.5

∴f1= frequency of the mode class =18

∴f0= frequency of the preceding class =14

∴f2= frequency of the succeeding class =17

∴c= class length of mode class =100

Z=L+(\dfrac{f_1-f_0}{2f_1-f_0-f_2})\times c\\\\Z=1399.5+(\dfrac{18-14}{2(18)-14-17})\times 100

Mode = 1479.5

Answered by Student1002893
2

Answer:

From given, we have

Lifetime         Frequency    Mid-point(m)       f × m         cf

1000-1099           5                1049.5             5247.5         5

1100-1199             9                 1149.5             10345.5        14      

1200-1299           11                1249.5             13744.5         25

1300-1399           14                1349.5             18893           39

1400-1499           18                1449.5             26091           57

1500-1599           17                1549.5             26341.5         74

1600-1699           12                1649.5             19794            86

1700-1799            9                 1749.5             15745.5         95

1800-1899           5                  1849.5             9247.5         100

                    ∑f = 100                                     ∑f × m = 145450

Mean = ∑ f × m / ∑f = 145450/100 = 1454.5

Median = cumulative frequency greater than or equal to ∑f/2

∑f/2 = 100/2 = 50

∴ The median class is 1399.5-1499.5.

Now,

∴L=lower boundary point of median class =1399.5

∴n=Total frequency =100

∴cf=Cumulative frequency of the class preceding the median class =39

∴f=Frequency of the median class =18

∴c=class length of median class =100

\begin{gathered}M=L+\dfrac{\frac{n}{2}-cf}{f}\times c\\\\M=1399.5+\dfrac{50-39}{18}\times 100\end{gathered}M=L+f2n−cf×cM=1399.5+1850−39×100

Median = 1460.6111

Mode

Here, the maximum frequency is 18.

∴ The mode class is 1399.5-1499.5.

∴L=lower boundary point of mode class =1399.5

∴f1= frequency of the mode class =18

∴f0= frequency of the preceding class =14

∴f2= frequency of the succeeding class =17

∴c= class length of mode class =100

\begin{gathered}Z=L+(\dfrac{f_1-f_0}{2f_1-f_0-f_2})\times c\\\\Z=1399.5+(\dfrac{18-14}{2(18)-14-17})\times 100\end{gathered}Z=L+(2f1−f0−f2f1−f0)×cZ=1399.5+(2(18)−14−1718−14)×100

Mode = 1479.5

Similar questions