Math, asked by chetnasaini3352, 1 year ago

Find the mean number of heads in three tosses of a fair coin.

Answers

Answered by amitnrw
3

Answer:

the mean number of heads in three tosses of a fair coin = 1.5

Step-by-step explanation:

three tosses of a fair coin.

have 2 * 2 * 2 = 8  Ways

HHH , HHT , HTH , HTT , THH , THT , TTH , TTT

H(0) = 1    (TTT)

H(1) = 3     (HTT , THT , TTH)

H(2) = 3  ( HHT , HTH , THH)

H(3) = 1  (HHH)

Mean =  (0 *1 +  1*3 + 2 *3  + 3 * 1)/8

= (0 + 3 + 6 + 3)/8

= 12/8

= 3/2

= 1.5

the mean number of heads in three tosses of a fair coin = 1.5

Answered by sonalip1219
2

The mean number of heads in 3 tosses of the coin is 1.5

Step-by-step explanation:

The mean number of heads in 3 tosses of the coin is computed as:

Let X be the Number of heads

Tossing 3 coins simultaneously

We get 0 Heads, 1 Heads, 2 heads or 3 Heads

So, value of X could be 0, 1,2 or 3

X             Outcomes                    Number of Outcomes             P(X)

0               (TTT)                                   1                                          1/8

1               (THT) , (HTT),                       3                                         3/8

                  (TTH)

2             (HHT) , (HTT),                       3                                         3/8

                  (THH)

3                (HHH)                                1                                           1/8

Therefore, the probability distribution is:

X                              P(X)

0                               1/8

1                                3/8

2                               3/8

3                                1/8

Then the mean number is given by:

Mean = X × P(X) + X × P(X) + X × P(X) + X × P(X)

Mean = 0 × 1/8 + 1 × 3/8 + 2 × 3/8 + 3 × 1/8

Mean = 0 + 3/8 + 6/8 + 3/8

Mean = (0 + 3 + 6 + 3) / 8

Mean = 12/ 8

Mean = 1.5

                 

Similar questions