Math, asked by kalpnaverma92, 1 year ago

Find the mean of data

Attachments:

Answers

Answered by vicky1597
0

Answer:

( used as a plural noun in technical English , when the singular datum ) fact or information

Answered by Anonymous
1

\Large\frak{\underline{\underline{Correct \: Question:}}}

35,32,35,42,38,32,34

Find the Mean,Median and Mode of data.

 \rule{170}2

\Large\frak{\underline{\underline{Your~Answer:}}}

\underline{\bigstar\:\textsf{Mean \: of \: data:}}

\maltese\:\:\:\boxed{\normalsize\sf\ Mean = \frac{Sum \: of \: all \: observations}{Number \: of \: total \: observations}}\\\\\\\normalsize\ : \implies\sf\ Mean = \scriptsize\frac{(35,32,35,42,38,32,34)}{7}\\\\\\\normalsize\ : \implies\sf\ Mean = \frac{\cancel{248}}{\cancel{7}}\\\\\\\normalsize\ : \implies\sf\ Mean = 35.42\\\\\\\normalsize\ : \implies{\underline{\boxed{\sf \red{ Mean = 35.42}}}}

\underline{\bigstar\:\textsf{Median \: of \: data:}}\\ \\ \normalsize\sf\bullet\: Arrange \:  the \: data \:  into \:  ascending \:  order:\\ 32,32,34,35,35,38,42\\ns(n) = 35 = odd \: number \\\\\maltese\:\:\boxed{\sf\ Median = \frac{n +1}{2}^{th} \: term}\\\\\\\normalsize\ : \implies\sf\ Median = \frac{35 + 1}{2}^{th} \: term\\\\\\\normalsize\ : \implies\sf\ Median = \frac{\cancel{36}}{\cancel{2}}^{th} \: term\\\\\\\normalsize\ : \implies\sf\ Median = 8^{th} \: term\\\\\\\normalsize\ : \implies\sf\ Median = 72\\\\\\\normalsize\ : \implies{\underline{\boxed{\sf \red{Median = 72 }}}}

\underline{\bigstar\:\textsf{Mode \: of \: data:}}\\\\ \sf\ Reference \: of \: occuring \: of \: outcomes \: is \\ \sf\ shown \: in \: table:

\boxed{\begin{tabular}{ c || c} \bf{Observation} & \bf{Times of occurring}\\ \cline{1-2}\sf{32} & \sf{2} \\ \cline{1-2}\sf{34} & \sf{1}\\ \cline{1-2}\sf{35} & \sf{2}\\ \cline{1-2}\sf{38} & \sf{1}\\ \cline{1-2}\sf{42} & \sf{1}\\ \end{tabular}}

\normalsize\sf\ From \: the \: observations \: it \: is \: quite \: simple \: \\ \sf\ to \: know \: that \: 32(2)and\:35(2)\: has \: highest \: times \: of \: occurring \\\\\\\maltese\:\:\boxed{\sf\ Mode = Maximum \: number \: of \: occuring}\\\\\\ \normalsize\ : \implies\sf\ Mode = 32\:and\:52 \\\\\\\normalsize\ : \implies{\underline{\boxed{\sf \red{ Mode = 32\:and\:35}}}}

Similar questions